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GENERAL INTRODUCTION 

Dissertation Organization 

This dissertation begins with a general introduction of the theory and the literature 

which provides background and recent progress in this area. Three research papers follow the 

general introduction with their literature cited. Finally, a general summary presents 

comments on this work and a list of cited references for the general introduction concludes 

this dissertation. 

Capillary Electrophoresis 

The resolving power of capillary electrophoresis (CE) was first demonstrated by 

Jorgenson and Lukacs^'-^^ in 1981. CE is a modem analytical technique which permits rapid 

and highly efficient separations of analytes in veiy small sample volumes. Separations are 

based on the differences in effective mobilities of analytes in electrophoretic media inside the 

capillary. A basic instrument for CE separation is illustrated in Figure 1, which includes a 

fused-silica separation capillary, two buffer reservoirs, a high-voltage power supply, and a 

detector. Different separation modes of CE, such as capillary zone electrophoresis 

(CZE)^'-^\ capillary gd electrophoresis (CGE)^^"^, capillary isotachophoresis (CITP/^'^\ 

capillary electrochromatography (CEC^'^ capillary isoelectric focusing (CIEF/'°''^\ and 
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micellar electrokinetic chromatography (MEKC/''\ can be performed using a standard CE 

instrument. Since the commercial CE instrument became available at the the end of 1980s, CE 

has increasingly been seen as an alternative or complementary separation method capable of 

faster analysis and higher efficiency than high performance liquid chromatography (HPLC). 

CZE is the most commonly used mode for the separation of ionic compounds in CE. 

The ionization of surface silanol groups in the fused-silica capillary at pH > 2 results in a 

negatively chaiged silica surface and an electrostatic diffuse layer of cations adjacent to the 

capillary wall. The migration of cations in the diffuse layer induces the electroosmotic flow 

toward the cathode. Ionic compounds with various charge to mass ratios exhibit different 

electrophoretic mobilities and are thus separated in CZE. Since the magnitude of the 

electroosmotic flow is usually greater than the electrophoretic velocities of analytes, both 

cations and anions can be separated and detected in the same run. 

Hjerten and his co-workers were the first to employ polyacrylamide-filled and 

agarose-filled capillaries for the separation of both small and large molecules^''*^ Analytes 

with different sizes migrate through the pores of the gd matrix at different velocities and are 

thus separated in CGE. Because of the anti-convective media and the minimized solute 

diffusion, CGE has achieved the highest separation efficiency ever obtained by any analytical 

separation technique to date. The number of theoretical plates in the range of 10-20 million 

can be routinely achieved^^'^ for the separation of proteins and DNA fragments. 

CITP is performed in a discontinuous buffer system. Sample components stack 

between the leading and terminating zones, and produce a steady-state migrating configuration 
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of consecutive sample zones. The leading buffer contains the ions with the highest mobility 

and the terminating ions are those with the lowest mobility^''\ Unlike other CE modes, the 

migration time of the analyte zone provides no indication of the identity of the analyte and 

the amount of analyte is proportional to the time between the steps of consecutive analyte 

zones. 

In CEC^^\ the capillary is packed with the material which can retain solutes by the 

partitioning phenomenon similar to that in HPLC. The mobile phase in CEC is driven by 

electroosmotic flow. The flow profile in CEC is no longer perfect plug-flow as in CZE 

because of the tortuous nature of the channels resulted from the packing material. CEC, 

however, still provides a higher efficiency than the pressure-driven system of HPLC. 

In MEKC^"\ surfactants are added to the electrophoresis buffer at the concentration 

above the critical micdle concentration to form micelles in equilibrium with the surfactant 

monomers. Surfactants are amphiphilic species, comprising both hydrophobic and 

hydrophilic regions. The micelles are spherical in shape with the hydrophobic tails of the 

surfactant oriented to the interior of the aggregate and the hydrophilic head groups exposed to 

the aqueous solution. Differential partitioning of solutes between the aqueous and the 

micellar phases in MEKC results in the separation of neutral and ionic compounds. 

CIEF was first described by Hjerten and Zhu in 1985^*°^ for the separation of proteins 

based on their differences in isoelectric point (pi). In CDEF, the flised-silica capillary is 

usually coated with linear polyacrylamide to eliminate the electroosmotic flow and protein 

adsorption onto the capillary wall. The CIEF capillary is initially filled with a solution 
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containing the protein analytes and a mixture of carrier ampholytes. These ampholytes are 

small amphoteric molecules containing both amino and carboxylic groups with different pis. 

Under the influence of applied electric field, the negatively charged acidic ampholytes migrate 

toward the anode and decrease the pH at the anodic section, while the positively charged 

ampholytes migrate toward the cathode and increase the pH at the cathodic section. These 

pH changes continue until each ampholyte molecule reaches its pi. Because each ampholyte 

molecule has its own buffering capacity, a continuous pH gradient is formed in the capillary. 

Protein analyte acquires a net negative charge in the region between its pi and cathodic 

end (where pH > pi) and migrates toward the anode. In contrast, protein analyte exhibits a 

net positive charge in the region between its pi and anodic end (where pH < pi) and migrates 

toward the cathode. As a result, protein molecules distributing over the entire capillary at the 

beginning of the experiment are focused at the re^ons where pH = pi. To prevent the 

ampholytes and analytes from migrating into the inlet (anode) and outlet (cathode) reservoirs 

by diffusion, solutions of 20 mM phosphoric acid and 20 mM sodium hydroxide are 

typically used as the anolyte and the catholyte, respectively. 

Due to the focusing effect, CIEF thus permits analysis of very dilute protein samples 

with a typical concentration factor of 50-100 times. Furthermore, the analyte molecules 

leaving the focused zones by diffusion or convection migrate back to their pis due to the same 

focusing effect. This zone-sharpening effect makes isoelectric focusing a high resolution tool 

for the analysis of proteins with a pi difference as small as 0.02 pH units^"\ 
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In CIEF, the focused analyte zones must be mobilized and detected at one end of the 

capillary. Among various mobilization approaches, the hydrodynamic mobilization described 

by K^srten and Zhu^'°^ involves the connection of a pump to the cathodic end of the capillary 

via a T-tube. The electric field is maintained during the mobilization step to help minimizing 

the hydrodynamic band broadening. The so called salt mobilization^^^^^^ involves the 

replacement of the anolyte, 20 mM phosphoric acid, with 20 mM sodium hydroxide after the 

focusing is complete. This replacement under the influence of an electric field results in an 

increase of solution pH inside the CEEF capillary. The focused ampholytes and protein 

analytes are no longer neutral and become negatively charged with electrophoretic migration 

toward the anodic end of the capillary. This is referred to as anodic mobilization. On the 

contrary, the cathodic mobilization can be achieved by replacing the catholyte, 20 mM 

sodium hydroxide, with a 20 mM phosphoric acid solution after the focusing is complete. 

Alternatively, a small amount of buffer additive such as 0.1% methyl cellulose can be 

added into the sample solution to suppress the electroosmotic flow in the uncoated 

capillary^^''^ The electroosmotic flow is reduced sufficiently to ensure that the focusing is 

complete before the analytes migrate past the detection window. The analytes are focused 

and eluted by electroosmotic flow in one step without an extra mobilization procedure. The 

buffer need not be changed, nor does the voltage have to be turned off and on. Since a bare 

silica capillary can be employed, the time consuming coating procedure is eliminated and the 

potential for instability of a coating, particularly at high pH, is avoided. 
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Liquid Chromatography 

The first commercial HPLC instrument was introduced in 1969. Since then, HPLC 

has progressed from a difficult "art" into one of the most important separation techniques 

used to solve a host of problems in the modon laboratory^^®* Figure 2 shows the basic 

components of an HPLC instrument. The solvent reservoir is employed to store the mobile 

phase. The pump delivers the mobile phase and is one of the most important components of 

HPLC since its performance directly affects retention time reproducibility and detector 

sensitivity. Analytes are introduced through the injector. The separation takes place in the 

column based on analytes' differential distribution between two phases; the stationary phase 

packed inside the column and the mobile phase delivered by the pump. As the sample 

components elute from the column, a suitable detector is used to monitor and transmit the 

signal to a recording device. The "chromatogram" is a record of the detector response as a 

function of time and indicates the presence of the analytes as "peaks". There are different 

forms of liquid chromatography including normal-phase, reversed-phase, size exclusion, ion 

exchange, and bioaffinity. 

In normal-phase chromatography^'*'"^ the retention is governed by the interaction of 

the polar parts of the stationary phase and solute. For the retention to occur in normal-phase, 

the stationary phase must be more polar than the mobile phase. Therefore, the stationary 

phase is usually alkylamine modified silica or unbonded silica. The mobile phase usually 

contains organic solvent such as hexane, methylene chloride, chloroform, or diethyl ether. 
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Normal-phase chromatography separates compounds that differ in the number or chemical 

nature of their polar groups with the nonpolar components emerging from the column first. 

Mobile phase eluent strength can be increased by adding a more polar solvent. 

Size exclusion chromatography is different from all other chromatography methods in 

that a simple molecule size classification process rather than any interaction phenomena 

forms the basis of separation. As the sample molecules travel through the column, they 

penetrate the pores of the packing. The smaller molecules migrate into more of the smaller 

pores of the cross-linked polymer gd than the larger molecules in the sample. Analyte 

molecules that are too large to diffuse into any pores are excluded at V; (interparticle volume 

or interstitial volume) while the molecules that are small enough to penetrate all the pores are 

elated at the breakthrough volume, Vq. All other components elute between V; and Vo with 

the larger molecules eluting first 

In ion exchange chromatography, the stationary phase is characterized by the 

presence of charged centers bearing exchangeable counterions. Retention is based on the 

attraction between solute ions and charged sites bound to the stationary phase. Typical 

stationary phases for ion exchange chromatography include polystyrene, cellulose, dextran 

and controlled-pore glass or porous silica. Mobile phase eluent strength can be enhanced by 

increasing the solution ionic strength. 

The fundamental principle of bioaffinity chromatography consists of the utilization of 

biologically active substances to form stable, specific, and reversible compIexes^^\ The 

formation of the biologically functioning complexes involves the participation of common 



www.manaraa.com

10 

molecular forces such as van der Waal's interaction, electrostatic interaction, dipole-dipole 

interaction, hydrophobic interaction, and hydrogen bonding. Choice of affinity ligands 

includes group-specific ligands such as dyes^^'\ immobilized metals^^\ enzyme cofactors^^\ 

and highly specific ligands involving antigen and antibody recognition^^l 

Reversed-phase chromatography^'®*''^ is characterized by a polar mobile phase in 

conjunction with a nonpolar stationary phase. The most commonly used stationary phase 

for reversed-phase chromatography is an octadecyl alkyl hydrocarbon chain (Cig) which is 

chemically bonded to the silica substrate. Typical mobile phases are mixtures of 

methanol/water and acetonitrile/water. Reversed-phase chromatography can be used to 

separate a broad spectrum of non-ionic, ionizable, and ionic compounds. Retention in 

reversed-phase chromatography occurs by non-specific hydrophobic interactions of the 

solutes with the stationary phase. The near universal application of reversed-phase 

chromatography stems fi^om the fact that virtually all oiganic molecules have hydrophobic 

regions in their structures and are capable of interacting with the stationary phase. 

The mobile phase is made by choosing one solvent in which the sample is very 

soluble and another solvent in which the sample is less soluble. One can then prepare a 

mobile phase by adjusting the amounts of the "strong" and "weak" solvents to a ratio where 

the attraction of the solutes to stationary phase is in a competitive equilibrium with the 

attraction (solubility) of the solutes to the mobile phase. The equilibrium of the solutes in 

the mobile phase relative to that in the stationary phase determines the retention time and 

effects the separation. The selectivity of reversed-phase chromatography may be 
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conveniently adjusted by changing the type of organic modifier in the mobile phase. For ionic 

or ionizable solutes, pH buffers which suppress ionization, or ion-pairing reagents used to 

form lipophilic complexes, increase the degree of solute transfer to the stationary phase and 

may be used to control selectivity. 

According to the solvophobic theory^^^*^^, hydrophobic interactions result from 

repulsive forces between a polar solvent and the nonpolar solute and stationary phase. The 

solvophobic theory assumes that aqueous mobile phases are highly structured due to the 

tendency of water molecules to self-associate by hydrogen bonding. As a consequence of the 

very high cohesive energy of the solvent, the less polar solutes are literally "squeezed out" of 

the mobile phase and are bound to the hydrocarbon portion of the stationary phase. The 

driving force in the binding of the solute to the stationary phase is the decrease in the area of 

the nonpolar segment of the solute molecule exposed to the solvent. 

Hydrophobic selectivity in reversed-phase chromatography arises as a consequence of 

differences in the nonpolar surface areas of different solutes. Reversed-phase 

chromatography is thus the preferred technique for separating homologous samples. Within a 

homologous series, the logarithm of the capacity factor is generally a linear function of the 

carbon number^^^. Branched chain compounds are generally retained to a lesser extent than 

their straight chain analogs and unsaturated compounds are eluted before the corresponding 

saturated analogs. Reversed-phase chromatography is also gaining increasing attention as a 

method for separating biological molecules such as proteins and peptides because the 
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hydrocarbon-like stationary phases equilibrate rapidly with changes in mobile phase 

composition and are therefore suitable for use with gradient elution^*®^ 

Electrospray Ionization 

The researcher who took the first step on the path of electrospray ionization mass 

spectrometry (ESIMS) is Malcolm Dole^°\ for trying to determine molecular weight 

distribution of some synthetic polymers. After much fhistration in trying to develop the so-

called Electrohydrodynamic Ionization into an useful ion source for mass spectrometry, most 

investigators abandoned the technique. It took a long way until the first demonstration of ESI 

was illustrated by Yamashita and Fenn in ggj became one of the most 

important ionization techniques for the detection and identification of biomolecules in MS. 

In ESI, an aqueous solution containing analytes is introduced through a capillary. 

Under the influence of a positive electric field applied at capillary terminus, the positive ions 

accumulate on the solution surface. The surface is further drawn out down field such that the 

so-called Taylor cone^^^ forms. At a sufficiendy high electric field, the cone is unstable and a 

liquid filament with a diameter of a few micrometers is emitted from the Taylor cone tip. At 

some distance downstream, the liquid filament becomes unstable and forms separate droplets. 

Solvent evaporation and droplet disintegration lead to very small and highly charged droplets 

capable of producing gas phase ions. The ions formed at atmospheric pressure are then 
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channeled into the high vacuum of the mass spectrometer through a capillary or a set of 

differentially pumped skimmers. 

Two theoretical models have been proposed to account for the formation of gas phase 

ions from charged droplets. In Dole's Charged Residue Model (CRM)^^®\ evaporation of 

solvent molecules from a charged droplet steadily decreases its size, thereby increasing its 

surface charge density. The droplet continues to shrink until it reaches the Rayleigh limit^^' 

at which the Coulomb repulsion overcomes the surface tension. The resulting instability 

breaks up the parent droplet into a hatch of offspring droplets, each of which continues to 

evaporate until it too reaches the Rayleigh limit. This sequence continues until the offspring 

droplets ultimately become so small that they contain only one analyte molecule. The 

analyte molecule retains some of the droplet charge and becomes a gas phase ion as the last 

solvent molecule evaporates. 

For the Ion Desorption Model (IDM) proposed by Iribame and Thomson^^*^\ the 

charged droplet commences the same sequence of evaporation and Coulomb fission steps as 

those in CRM. However, the charged droplets at some intermediate stage are small enough so 

that the surface charge density is sufficiently intense to overcome solvation forces and to lift 

an analyte ion from the droplet surface into the ambient bath gas. The exact mechanism for 

ion formation in ESI remains an active research topic in the literature^^'^^ 

Several features of ESI have contributed to its great success and significance in various 

biological and biomedical applications. First, ESI can be employed for the direct interfacing 

of MS with HPLC or CE separations. Furthermore, the multiple chai;^ng phenomenon in 
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ESI allows the determination of molecular weight of macromolecules over 50 kDa using a 

mass spectrometer with limited m/z range. When averaged, these multiple-charged ions 

provide excellent accuracy and precision in the mass determination of macromolecules^'*''^^^ 

Finally, ESI is probably the 'softest' of all ionization techniques yet developed, involving 

only the combination of high electric fields, moderated by an atmospheric pressure bath gas 

with typically only mild heating to enhance desolvation. Thus, the preservation of non-

covalent association is possible in ESI. In fact, the application of ESI permits the 

measurements of non-covalent interactions between bidogical macromolecules, such as the 

heme-protein complex^^\ enzyme-inhibitor complex^'*'^, oligonucleotide duplex^^\ and 

receptor-ligand complex^'*^"^'^. 

Quadrupole Mass Spectrometry 

Quadrupole mass analyzers are now widely used in many areas of chemical analysis. 

For applications where extremely high resolution data or exact mass measurements are not 

required, quadrupoles offer a number of significant advantages over more traditional mass 

analyzers^'°'^^\ 

First, the short distance between the ion source and detector combined with the strong 

focusing properties of such devices make the quadrupole mass analyzer useful at 

comparatively high pressures (~ 10'^ torr). Second, quadrupoles resolve ions on the basis of 

their mass-to-charge ratios. Finally, quadrupole mass analyzer is a mechanically simple 
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instniment compared to other types of mass analyzers. Quadrupole devices do not rely on 

the use of magnetic fields for their mass discrimination. Thus, the slow scan speeds 

commonly associated with magnets are avoided. 

Quadrupole analyzers are made up of four rods with circular or, ideally, hyperbolic 

section. The filtering action of the quadrupole mass analyzer is obtained by the application 

of combination of the time independent (dc) and a time dependent (ac) potential. The 

stability of the ion motion within the quadrupole can be described using an a-q stability 

diagram (Figure 3) with the definitions of a and q given by 

a = 4eU/co^ro^m (1) 

q = 2eV/ci)^ro^ (2) 

U is the magnitude of the applied dc potential, V is the magnitude of the applied ac or rf 

potential, O) is the angular frequency (27tf) of the applied ac waveform, ro is the distance from 

the center axis (the z axis) to the surface of any electrode, m is the mass of the ion. The 

stability diagram allows the operation of the quadrupole mass analyzer to be reduced from a 

six-dimensional issue (involving e, co, Tq, m, U, and V) to a two-dimensional problem involving 

only the reduced parameters a and q. This results in a tremendous conceptual simplification 

that allows one to visualize readily the effects of various physical parameters on the 

operation of the quadrupole mass analyzer. 
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Fourier Transform Ion Cyclotron Resonance Mass Spectrometry 

Marshall and Comisarow^^^^ built the first fourier transform ion cyclotron resonance 

mass spectrometry (FTICR/MS) instniment in 1978. Since that time, FTICR/MS has 

received considerable attention for its ability to make mass measurements with a combination 

of resolution and accuracy that is hi^er than any other mass spectrometers^^^'^^^ All 

FTICR/MS instruments consist of four main components. First is a magnet, which can be a 

permanent magnet, an electromagnet, but mostly a superconducting magnet The 

performance of the FTICR/MS instrument improves as the magnetic field strength increases 

and so the trend is to design instruments with stronger fields using superconducting magnets. 

Recently, FTICR/MS instrument with field strength in excess of 12 Tesla was demonstrated 

for the high resolution and accviracy measurements for biomolecules with an electrospray 

ionization source. 

The second component common to FTICR/MS instruments is the analyzer cell. The 

cell is the heart of the instrument, where ions are stored, mass analyzed and detected. The 

cells can be cubic or cylindrical, consist three pairs of electrodes, a pair of trapping electrodes 

mounted perpendicular to the magnetic field and two separate pairs of excite electrodes and 

detection electrodes mounted parallel to the magnetic field. The third feature required of 

FTICR/MS instruments is an ultrahigh vacuxim system. For obtaining ultrahigh resolution, 

pressures of 10"'-10''® torr are required in the analyzer cell. To achieve these low pressures, 

cryogenic pumps or turbomolecular pumps are used frequently than diffusion pumps. The 
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fourth feature that is shared by all FTICR/MS instruments is a sophisticated data system. 

This includes a frequency synthesizer, delay pulse generator, broadband rf. amplifier and 

preamplifier, a fast transient digitizer, and a computer to coordinate all of the electronic 

devices during the data acquisition, as well as to process and analyze the data. 

The motion of ions in the FTICR/MS analyzer cell is governed by the magnetic and 

electric fields that are present. There are three fundamental ion motions in FTICR/MS, 

cyclotron motion, trapping motion, and magnetron motion. The basis for FTICR/MS is ion 

cyclotron motion, which arises firom the interaction of an ion with the unidirectional magnetic 

field. The cyclotron frequency, fc, is in the order of 5 kHz to 5 MHz and is determined only 

by three physical parameters, the strength of the magnetic field, B, the charge present on the 

ion, q, and the mass of the ion, m, as shown by equation (3). 

fc = qB/27nn (3) 

The magnetic field is held constant and the mass-to-charge ratio of an ion is determined by 

measuring its cyclotron frequency. The simplicity of the governing equation for ion motion 

in FTICR/MS instruments is unique among mass spectrometers. In particular, it should be 

noted that the cyclotron frequency of an ion is independent of its velocity and therefore its 

kinetic energy. This is one of the fundamental reasons why the FTICR/MS instrument is 

able to achieve ultrahigh resolution. 

An ion that moves parallel to the magnetic field experiences no force from the 

magnetic field. Therefore, a small, symmetric voltage is applied to the trapping electrodes to 

create a potential well to trap ions in the analyzer cell along the magnetic field axis. Positive 
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voltage is applied to store positive ions while negative voltage is applied to store negative 

ions. Ions undergo simple harmonic oscillation between the trapping plates. 

The combination of the magnetic and electric field together introduces a third 

fundamental motion of the ions, the magnetron motion. The magnetron frequency fn,, is a 

function of the magnitude of the trapping potential, V, the magnetic field strength, B, the 

distance between the trapping plates, a, and the geometry of the analyzer cell, represented by 

the geometry factor a, as shown in equation (4). 

f„ = aV/7ca2B (4) 

Magnetron frequencies are in the order of 1-100 Hz and are much lower than cyclotron 

frequency. It should be noted that magnetron motion serves no useful analytical purpose. It 

is a consequence of the curvature of the trapping electric field due to the finite length of the 

cell electrodes. 

With ESI, ions are formed externally at atmospheric pressure and guided to the 

analyzer cell through differential pumping stages and quadrupole focusing or electrostatic 

focusing^^^"^\ After ions are formed and trapped ion the analyzer cell, they are excited into 

coherent motion by applying a sinusoidal voltage to the excitation plates. Ions that are in 

resonance with the frequency of the applied excitation rf electric field absorb energy and 

spiral outwards to their resonance orbit. Ions that are not in resonance do not absorb energy 

and remain at the center of the cell. All ions of the same mass-to-charge ratio are excited 

coherently, which means that they are grouped as tightly after excitation as they were 

initially. Ions of the same m/z ratio undergo cyclotron motion as a packet. As they pass the 
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cell's electrodes, the coherent orbiting ion packet attracts electrons to first one and then the 

other of the detection plates. This alternating current is called the image current^^^\ The 

frequency of the detected image current is nearly equal to the frequency of the cyclotron 

frequency. It is exactly equal to the difference between the cyclotron and magnetron 

frequencies. 

The number of ESI/FTICR/MS instruments is growing exponentially^®^®^\ There are 

many reasons for the rapid increase and acceptance in popularity. For example, the typical 

m/z range of ions generated in ESI is between 500 to 4000 Da/z and coincides with the mass 

range of FTICR/MS. A second area of compatibility of ESI with FTICR/MS is tandem mass 

spectrometry. FTICR/MS provides the unambiguous charge state and thus molecular weight 

information through the isotopically resolved peaks. As a consequence, ESI/FTICR/MS is 

showing promise in the generating structural information of biomolecules in the 10 to 100 

kDa range from a single mass spectrum. Finally, FTICR/MS is the ideal technique to study 

the reactivity and higher-order structure of electrosprayed biomolecular ions. In contrast 

with the microsecond to millisecond timescale for most mass analyzers, the trapped ion cdl 

of FTICR/MS provides an attractive environment in which to probe these complex ions from 

seconds to hours. 
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Capillary Electrophoresis-Electrospray Ionization Mass Spectrometry 

CE is a high efficiency separation method, while ESIMS allows the formation of 

multiple-charged ions directly from the electrophoresis eluent and the precise mass 

determination of high molecular weight ions. The combination of C£ with ESIMS is very 

attractive for obtaining higher selectivi^ and for structural analysis of analytes in a MS/MS 

mode. 

Capillary Electrophoresis-Electrosprav Ionization Mass Spectrometrv Interface 

The principal requirement of a CE-ESIMS interface is to produce the gas phase ions 

directly from the CE running buffer and transport the gas ions from the atmospheric pressure 

region into the mass spectrometer as efficiently as possible. The first CE-ESIMS interface 

was described by Smith and his co-workers^^\ A stainless steel needle was employed to 

ensure electrical contact with the solution eluting out of the CE capillary, hence terminating 

the CE circuit and initializing the electrospray process. A less satisfactory method for 

making the electric contact between the electrophoretic buffer and the electrospray interface 

was made by depositing a thin metal film on the outer surface of the capillary instead of using 

a stainless steel needle^"\ 

Smith and his co-workers^®^^ also introduced an improved ESIMS interface equipped 

with a coaxial sheath liquid as shown in Figure 4. In this design, a flised-silica capillary 
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protmded about O.S mm from a stainless steel needle. The sheath liquid usually consisted of 

a mixture of water and volatile (^ganic solvent such as methanol. When the CE buffer was 

mixed with the sheath liquid at the end of the capillary, the surface tension decreased while 

the volatility increased, which enhanced the electrospray efficiency. Furthermore, the sheath 

liquid established electrical contact at the end of the capillary. The sheath potential was 

controlled around S kV (for positive ion mode) and functioned as both the CE cathodic 

potential and the electrospray voltage. A counter current flow of warm nitrogen gas (up to 

80 °C) between the nozzle and the ESI source was used to aid desolvation, although sufficient 

heating during transport into the mass spectrometer also accomplished effective desolvation. 

Lee et al.^®^ developed a liquid junction coupling for CZE-ion spray MS (which is the 

nebulizing gas assisted ESIMS). The liquid junction and coaxial interfaces were compared by 

Pleasance et al.^^^ and the coaxial sheath flow appeared to have several advantages with 

regard to ruggedness, ease of use, better sensitivity and electrophoretic performance. Gale 

and Smith^®^ described a sheathless ESI source in which a small diameter etched-tip capillary 

was incorporated. The ability to electrospray aqueous solutions without the use of an 

ancillary sheath flow was demonstrated with several biopolymers. Tsuji and his co

workers^"^ introduced a simple procedure for preparing gold-coated silica capillaries used in 

ESIMS. The performance characteristics of these durable capillaries as continuous infusion 

sources were examined, and their utility in on-line CE-ESIMS was demonstrated. 

A microdialysis junction was developed by Zhou and Lunte for providing post-run 

additive to a CZE separation employing electrochemical detection^'^ Recently, Severs and 
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co-workers reported the use of a microdialysis junction for making the necessary electrical 

connection across the dialysis membrane for CZE-ESIMS intafacing^^\ A 

microelectrospray emitter produces a stable electrospray at the low flow rates of CZE 

effluents and avoids both the makeup flow needed by sheath flow interface and the 

subsequent dilution and reduction in sensitivity. 

Applications of Capillary Electrophoresis-Electrosprav Ionization Mass Spectrometry 

One of the advantages of incorporating ESIMS lies in the multiple charging of the 

analytes under ESI conditions. The multiple charging phenomenon in ESI makes the 

detection of biomacromolecules possible using a quadrupole mass spectrometer with limited 

m/z range. Various applications have been reported for the analysis of peptides and proteins 

by CE-ESIMS^"*"^. A reduced elution speed method^''*^ was described for the enhancement 

of detection sensitivity in CZE-ESIMS. Mass spectra for a set of standard proteins were 

obtained from 60 femtomole of proteins, while an albumin tryptic digestion was analyzed 

with the injections of 40 femtomole of proteins. The use of small i.d. capillaries for the 

detection of protein analytes at the attomole level was demonstrated by Smith and his co

workers^^. With the proper selection of mnning buffers and on-line combination of transient 

CITP with ESIMS, the concentration detection limits for a full scan were improved by a 

factor of 100 times, in comparison with CZE-ESIMS^. 
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In the pharmaceutical area, identification of non-steroidal anti-inflammatory drugs and 

their metabolites in human urine was demonstrated using CZE-ESIMS^^. The application of 

C2^-ESIMS for drug metabolic studies with a particular emphasis on neuroleptic drugs was 

reported by Tomlinson et A non-aqueous solution was used as the electrophoretic 

medium due to the low solubility of drug analytes in aqueous solution. Furthermore, CE-

ESIMS has been applied for the analysis of compounds of environmental concern, such as 

^ochemicals, pesticides, inorganic compounds and dyes^'''*'*\ For example, Lamoree and 

his co-workers^^^ demonstrated the determination of P-agonists which are used illegally in the 

cattle industry to increase meat production. 

Smith and co-workers developed the first successful CE-FTICR/MS interface and 

have acquired the first on-line high resolution mass spectra of CE samples^®^*®®\ In their first 

demonstration of the feasibility of the CE-FTICR/MS interface, a mixture of six proteins was 

separated and detected by on-line CE-FTICR/MS^^'^ Sufficient mass-spectral resolving 

power was achieved to observe the individual isotopes in charge states for proteins as large as 

carbonic anhydrase (MW 28,802 Da). The actual amount of sample consumed per scan was 

about 20 attomoles. In later work, a tandem mass spectrometry experiment was performed in 

which electrosprayed CE solute bands were subjected to sustained ofF-resonance irradiation 

(SORI) to produce dissociation spectra for proteins as large as equine apomyoglobin with 

resolving power of SO.OOO^''^. CE-FTICR/MS was further applied to the challenging task of 

directly analyzing cellular proteins^®'\ They demonstrated the on-line acquisition of high-

resolution mass spectra (average resolution 45,000 fwhm) of both a and P chains of 
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hemoglobin acquired from the injection of 10 human erythrocytes (corresponding to 4.5 

femtomole of hemoglobin. 

Liquid Chromatography-Electrospray Ionization Mass Spectrometry 

The on-line combination of liquid chromatography and mass spectrometry (LC-MS) 

has been under investigation for over 20 years. Three major difficulties are met in combining 

the two powerful analytical techniques, including; (i) the apparent flow rate incompatibility 

as expressed in the need to introduce 1 ml/min of a liquid effluent from a conventional LC 

column into the high vacuum of the mass spectrometer, (ii) the solvent composition 

incompatibility as result of the frequent use of non-volatile mobile phase additives in LC 

separation development, and (iii) the ionization of non-volatile and/or thermally labile 

analytes. 

The ionization of analytes in liquid is no longer considered a problem in LC-MS since 

the introduction of powerfiil soft-ionization techniques such as fast-atom bombardment 

(FAB), thermospray, electrospray and matrix-assisted laser desorption ionization (MALDI). 

The only general solution in solving the mobile phase incompatibility problem is a change of 

the phase system in the LC separation, i.e., by the removal of all non-volatile additives from 

the mobile phase. However, this solution is dictated purely from the MS point of view and 

sometimes extremely difficult to achieve in LC. There are also some technological solutions 

should be mentioned, which may be used to solve the problem. First is the on-line 
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continuous-flow liquid-liquid extraction for LC-MS developed by Karger's group^''''®^ A 

second approach based on coupled-column and valve-switching techniques, was first 

demonstrated by Edlund et al/'^^ and later simplified by Walhagen^^^ A third approach is 

based on the application of micromembrane suppressers, initially developed for 

conductometric detection in ion chromatography. This approach has been demonstrated for 

the on-line combination of ion-pair LC and MS and LC-MS analysis of oligosaccharides using 

mobile phases containing a sodium acetate concentration as high as 0.4 

Liquid chromatography-Mass Spectrometry Interface 

Many efforts have been made in designing different LC-MS interface to solve the 

flow-rate incompatibility problem. Over the past 20 years, a total of about 25 different LC-

MS interfaces have been described in the literature^'^''^^ Only the ones that have 

demonstrated practical potential for real applications are discussed here. 

The moving-belt interface^'^^ consists of an endless continuously mo\dng Kapton 

ribbon which transports the column effluent from the LC column outlet towards the MS ion 

source. Desorption of the analyte into the ion source by flash evaporation at the tip of the 

moving-belt interface provides the analyte in a gaseous state, susceptible to conventional 

electrochemical ionization (EI) or chemical ionization (CI). Although quite successful for a 

few years, the moving-belt interface nowadays is hardly used. 
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In a thermospray interface^'^, a jet of vapor and small droplets is generated out of a 

heated vaporizer tube. The analytes are ionized by means of solvent-mediated CI reactions 

and ion evaporation processes. The reagent gas for solvent-mediated CI can be generated 

either in a conventional way using energetic electrons from a filament or discharge electrode, 

or in a process called thermospray ionization, where the volatile buffer dissolved in the eluent 

is involved. The thermospray interface for many years has been the interface of choice and 

continues to solve practical problems in everyday practice. 

In a continuous-flow or dynamic fast-atom bombardment interface (CF-FABy'®^ a 

small liquid stream, typically 5-15 ^ll/min, mixed with an appropriate FAB matrix solvent, 

flows through a narrow-bore fused-silica capillary towards either a stainless-steel frit or gold-

plated FAB target. Ions are generated by bombardment of the liquid film by fast atoms. The 

use of CF-FAB is decreasing due to the introduction of especially the electrospray interface. 

However, continued application of CF-FAB especially at magnetic sector instruments can be 

expected owing to the ease of implementation of CF-FAB interface. 

In a particle-beam interface^''^ the column effluent is nebulized either pneumatically 

or by thermospray nebulization, into a near atmospheric-pressure desolvation chamber, 

which is connected to a momentum separator. In the separator, the high-mass analytes are 

preferentially transferred to the MS ion source while the low-mass solvent molecules are 

efficiently pumped away. The analyte molecules are transferred as small particles to a 

conventional ion source, where they disintegrate upon collisions at the heated source walls. 

The released gaseous molecules are ionized by EI or CI. 
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In an atmospheric-pressure chemical ionization (APCI) interface^'°°\ the column 

effluent is pneumatically nd)ulized into a heated stainless-steel tube, where the solvent 

evaporates almost completely. Atmospheric-pressure chemical ionization is initiated by 

electrons from a corona discharge needle in the same region. Subsequently, the ions generated 

are sampled into the high vacuum of the mass spectrometer for mass analysis. 

In an electrospray ionization interface^^°^*^°^\ the column effluent is nebulized into the 

atmospheric-pressure region as a result of the influence of a high electric field applied at the 

electrospray capillary tip. The solvent emei^ng from the capillary tip breaks into highly 

charged droplets, typically only a few micrometers in diameter. The charged droplets drift in 

the electric field between the capillary and the mass spectrometer sampling aperture. In 

transit through the MS interface, the droplets experience conditions that cause evaporation 

and droplet disintegration, leading ultimately to very small, highly charged droplets capable of 

producing gas-phase ions, either by ion emission or complete solvent evaporation. In some 

designs, the electrospray nebulization is assisted by pneumatic nebulization. Such an 

approach is called an ionspray interface^'°^\ 
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Applications of Reversed-phase Liquid Chromatographv-Electrosprav Ionization Mass 

Spectrometry 

It is estimated that somewhere between 75-90% of all HPLC separations are carried 

out in the reversed-phase mode^''^ while electrospray ionization (ESI) has become one of the 

leading sample introduction/ionization technique for Reversed-phase liquid 

chromatography (RPLC)-electrospray ionization mass spectrometry (ESIMS) combines the 

two most popular and powerful techniques together and has had a major impact in many 

fields especially the bio-related areas of pure and applied science and technique. 

RPLC-ESIMS is a well-established method for the identification and characterization 

of proteins and peptides because of its inherent selectivity, specificity, and sensitivity. This 

method is particularly valuable for mixture analysis because of the combined strengths of LC 

to purify, concentrate, and resolve complex mixtures, and ESIMS for mass separation and 

determination. Typical protocols for protein identification or characterization of 

modifications begin with the enzymatic digestion of the protein sample, resulting in a 

complex mixture of peptides. The separation of these mixtures by RPLC facilitates the task 

of spectra interpretation in ESIMS. 

Carr and his co-workers developed mass spectrometric methods of glycopeptide-

specific detection in LC-ESIMS^'°^\ The most specific method involves monitoring of sugar 

oxonium fi^gment ions during precursor-ion scan ESIMS/MS. Signals from nonglycosylated 

peptides are virtually eliminated, resulting in a total-ion current chromatographic trace of only 
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the glycopeptides present in the digest The corresponding mass spectra yield molecular 

weight and glycopeptide microheterogeneity information. An alternative and complementary 

approach which they termed collisional-excitation scanning also involves fragmentation of 

glycopeptides to sugar oxonium ion fragments in the source region but does not involve any 

mass-selection process, permitting the experiment to be performed in a single quadrupole 

instrument. A selected-ion chromatogram for carbohydrate-specific ions such as the N-

acetylhexosamine oxonium ion (m/z 204) produces a glycopeptide-specific trace. 

RPLC-ESIMS has also been demonstrated as a sensitive and selective method for the 

analysis of drugs and their metabolites in complex bidogical matrixes. Crowther et al.^'"®^ 

applied RPLC-ESIMS to the analysis of a pentapeptide drug (IRI-514) in rabbit and human 

plasma. The lower limit of quantitation using selected ion monitoring was determined to be 2 

ng/ml. Jackson et al.^'°'^ investigated the application of RPLC-ESIMS for dmg metabolism 

studies using S 9788 and various synthesized metabolic products as model compounds to 

assess the response characteristics with regard to compound lipophilicity and the influence of 

biological matrix components. The results demonstrated the versatility of the electrospray 

ionization technique to analyze compounds of widely varying polarity and the power of 

MS/MS to identify unequivocally metabolic products. Weidolf and co-workers^'°®^ noted that 

although the limit of detection by LC/MS with selected ion monitoring (SIM) was around 10 

pg for standards of sulfoconjugated metabolites of the synthetic steroid boldenone, as 

compared to 100 pg using selected reaction monitoring (SRM) or multiple reaction monitoring 

(MRM), MS/MS showed improved selectivity for structure confirmation and quantitation in 
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biological extracts. Unless rigorous sample clean-up strategies are employed or fortuitous 

chromatographic conditions can be found, ions originating in the mobile phase or from 

endogenous substances present in biological extracts can result in considerable background 

noise even when SIM is used. The effect is most pronounced in the lower m/z values. 
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ABSTRACT 

A microdiaiysis junction, based on a microdialysis membrane connecting both a 

separation capillary and a short, sharply tapered microelectrospray emitter capillary, is 

demonstrated for on-line combination of capillary isoelectric focusing (CIEF) with 

electrospray ionization mass spectrometry (ESIMS). The microdialysis junction provides 

the necessary electrical connection across the dialysis membrane for defining the electric fields 

needed for the CIEF separation and the electrospray process. Additionally, post-separation 

acidification of focused protein zones eluted from the CIEF capillary is achieved using the 

microdialysis junction while maintaining separation efficiency and resolution. A 

microelectrospray emitter produces a stable electrospray of protein analytes without the 

need for a makeup liquid flow and eliminates any subsequent sample dilution and reduction in 

MS sensitivity. The microdialysis junction is advantageous over the coaxial liquid sheath 

interface as evidenced by the simplicity in operation procedures, the enhancement in 
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detection sensitivity, and the linear correlation between protein's migration time and 

isoelectric point in CIEF-ESIMS. 

INTRODUCTION 

In capillary isoelectric focusing (CIEF), the coated flised-silica capillary contains not 

only carrier ampholytes for the creation of a pH gradient but also proteins'"^. When an 

electric potential is applied, the negatively charged acidic ampholytes migrate toward the 

anode and decrease the pH at the anodic section, while the positively charged basic 

ampholytes migrate toward the cathode and increase the pH at the cathodic section. These 

pH changes continue until each ampholyte species reaches its isoelectric point (pi). Protein 

analytes as amphoteric macromolecules also focus at their pi values in narrow zones in the 

same way as the individual ampholytes. 

Theoretically, there is no movement in the coated capillary when the focusing is 

completed. Thus, the entire pH gradient, along with the focused protein zones, must be 

mobilized past the UV detection window or into the mass spectrometer. On-line coupling of 

CIEF with electrospray ionization mass spectrometry (ESIMS) is very attractive for the 

direct identification of analytes, selectivity enhancement, and structure confirmation by 

MS/MS techniques. At the end of the CIEF capillary, the mobilized protein zones are 

analyzed by ESIMS using a coaxial sheath flow configuration'^'. The use of sheath flow 

establishes the electrical connection at the CIEF capillary terminus, which serves to define the 

electric field along the CEEF capillary and apply an electric voltage for electrospray 

ionization'". 
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The disadvantage in employing a coaxial liquid sheath flow is the addition of excess 

electrolyte to the CDEF effluent. The presence of additional sheath liquid decreases analyte 

sensitivity in ESIMS due to the larger initial drop size and the effective competition for the 

limited number of charges in the electrospray process. The excess electrolyte results in a 

smaller fraction of protein analytes in solution being converted to the gas phase ions. The use 

of smaller diameter and more sharply tapered emitters in ESI improves analyte sensitivity, 

minimizes sample consumption, and allows ionization of aqueous samples'^''^. Based on a 

thin gold coating deposited on the tapered terminus of the capillary, a sheathless capillary 

zone electrophoresis (CZE)-ESIMS interface has demonstrated all these advantages in 

conjunction with on-line separation'®"'', even allowing hemoglobin analysis at the single-cell 

levelHowever, the limited lifetime and difficulty of production of these capillaries restrict 

more routine applications of this CZE-ESIMS interface design. 

A microdialysis junction was developed by Zhou and Lunte for providing post-run 

additive to a CZE separation employing electrochemical detection'®. On-line microdialysis 

sample cleanup for ESIMS was demonstrated by Liu et al." for oligonucleotide analysis. 

Concentration and desalting of analytes in small volumes, prior to CZE separations, were 

achieved by using an array of hollow fibers^". Simultaneously with the concentration, the 

sample can be purified using a fiber with an appropriate molecular weight cutoff value. 

Recently, Severs and her co-workers reported the use of a microdialysis junction for making 

the necessary electrical connection across the dialysis membrane for CZE-ESIMS 

interfacing^'"^. A microelectrospray emitter produced a stable electrospray at the low flow 

rates of CZE effluents and avoided both the need for a makeup flow provided by sheath flow 

interface and the subsequent dilution and reduction in sensitivity. 
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In this study, the performance and the capabilities of the microdialysis interface are 

further investigated and illustrated for CIEF-ESIMS. Besides the electrical connection across 

the microdialysis junction, post-run acidification via the dialysis membrane is demonstrated 

for enhancing the protonation and the ionization efficiency of focused proteins ^^le 

maintaining separation efficiency, resolution, and sensitivity in CIEF-ESIMS. 

Reproducibility studies and comparisons Avith coaxial liquid sheath flow interface are made 

with regard to operation procedures, sensitivity, and the correlation between protein's 

migration time and pi in CIEF-ESIMS. The use of microdialysis junction together with in-

probe sequential focusing and mobilization lend themselves to automation. 

EXPERIMENTAL SECTION 

Materials and Chemicals. Model proteins, including cytochrome c (horse heart, pi 9.6), 

myoglobin (horse heart, pi 7.2 and 6.8), cari^onic anhydrase I (human erythrocyte, pi 6.6), 

and carbonic anhydrase II (bovine erythrocyte, pi 5.9), were acquired from Sigma (St. Louis, 

MO). Another batch of bovine carbonic anhydrase II obtained from Sigma exhibited a pi of 

5.4. Carrier ampholj'tes, pharmalyte 3-10, were obtained from Pharmacia (Uppsala, 

Sweden). All other chemicals, including acetic acid, ammonium acetate, ammonium 

hydroxide, methanol, phosphoric acid, and sodium hydroxide were purchased from Fisher 

(Fair Lawn, NJ). All background electrolytes and sample solutions were prepared using 

water purified by a Nanopure n system (Branstead, Dubuque, lA) and further filtered witfi a 

0.22 fun membrane (Millipore, Bedford, MA). 

Fused-silica capillaries with 50 ^m i.d. and 192 jmi o.d. (Polymicro Technologies, 

Phoenix, AZ) were coated internally with linear polyacrylamide for the elimination of 

electroosmotic flow and protein adsorption onto the capillary wall^. The polyimide coating 
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on the external capillary surface was removed from the last 2 cm of short lengths of silica 

capillary, and these portions were then etched in 40% hydrofluoric acid (Aldrich, Milwaukee, 

WI) for approximately 20 min. A nitrogen flow was introduced into the capillary to prevent 

hydrofluoric acid from etching the inner capillary wall coated with linear polyacrylamide. 

The resulting capillary tip was trimmed to produce a sharp ion emitter. The 250 jun i.d. 

polysulfone dialysis tubing (nominal molecular weight cutoff of 10,000) was obtained from 

A/G Technology Corp. (Needham, MA). 

Microdialysis Interface Design. The CEEF capillary and a 1-cm-long ESI emitter capillary 

were butted together inside a 0.5 cm length of polysulfone dialysis tubing. Epoxy (Loctite, 

Cleveland, OH) was then applied around the outside of the dialysis tubing/capillary 

boundaries. After the epoxy had dried, the capillary was inserted through a 100 fJ Eppendorf 

pipet tip containing the anolyte for the CIEF separation. The pipet tip was mounted on an 

x-y-z motion manipulator for positioning relative to the heated metal capillary of a TSQ 7000 

mass spectrometer (Finnigan MAT, San Jose, CA). A platinum wire was inserted in the 

pipet tip and connected to a ground or a high-voltage (HV) power supply to provide 

electrical connection at the microdialysis junction. 

Capillary Isoelectric Focusing-EIectrospray Ionization Mass Spectrometry. The CIEF 

apparatus was constructed in-house using a CZE lOOOR HV power supply (Spellman High-

Voltage Electronics, Plainview, NY). The mass spectrometer was a TSQ 7000 (Finnigan 

MAT) triple quadrupole equipped with an electrospray ionization source. Two separate 

electrospray probes, including a home-built microelectrospray ionization source'^ and the 

standard Finnigan electrospray source, were employed when using the microdialysis junction 

and a coaxial sheath flow system, respectively. 
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The first quadrupole was used for the mass scanning of protein ions, while the second 

and third quadrupoles were operated in the radio frequency-only mode. The electron 

multiplier was set at 1.4 kV, with the conversion dynode at -15 kV. The heated desolvation 

capillary in the ESI source was held at 200 "C. The mass spectrometer was tuned and 

calibrated using an acetic acid solution (methanol/water/acetic acid, 50:49:1 v/v/v) containing 

myoglobin and the small peptide methionine-arginine-phenylalanine-alanine. 

The detailed configuration of CIEF-ESIMS using coaxial liquid sheath flow interface, 

including sheath liquid and electrical connection, was described elsewhere"**^'^. A 30-cm-Iong 

coated capillary was mounted within the electrospray probe. The capillary was filled with a 

solution containing 0.5% pharmalyte 3-10 and model proteins. The outlet reservoir, 

containing 20 mM sodium hydroxide as the catholyte, was located inside the electrospray 

housing during the focusing step. The inlet reservoir, containing 20 mM phosphoric acid as 

the anolyte, was kept outside at the same height as the outlet reservoir. Focusing was 

performed at a 15 kV constant voltage for approximately 10 min. Once the focusing was 

complete, the electric potential was turned off, and the outlet reservoir was removed. The 

capillary tip was fixed about 0.5 mm outside the electrospray needle. A sheath liquid 

composed of 50% methanol, 49% water, and 1% acetic acid (v/v/v) at pH 2.6 was delivered at 

a flow rate of 0.3 pl/min using a Harvard Apparatus 22 syringe pump (South Natick, MA). 

During the cathodic mobilization step, two HV power supplies were used for delivering the 

electric potentials of 19 kV and 4 kV to the inlet electrode and electrospray needle, 

respectively. To speed up protein mobilization and minimize the formation of moving ionic 

boundary inside the CIEF capillary^-^, gravity mobilization was combined with cathodic 

mobilization by raising the inlet reservoir 8 cm above the electrospray needle. 
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For all CIEF-ESIMS measurements using the microdialysis junction, a 10% acetic add 

solution was employed as the anolyte and added into the pipet tip. The inlet reservoir, 

containing 0.3% ammonium hydroxide as the catholyte, was kept at the same height as the 

microdialysis junction. Focusing was performed by applying a constant voltage of -15 kV at 

the inlet reservoir for approximately 10 min. A common ground connection was formed 

between the CDSF system and the microdialysis junction. Immediately after the focusing, 

pressure mobilization was achieved by applying a 0.2 psi nitrogen pressure at the inlet 

reservoir. During the pressure mobilization step, two HV power supplies were used for 

delivering the electric potentials of -13 kV and 2 kV to the inlet electrode and platinum wire 

connected to the microdialysis junction, respectively. There was no cathodic mobilization of 

focused protein zones and no need for readjusting capillary position for all CIEF-ESIMS 

measurements when using the microdialysis junction. 

RESULTS AND DISCUSSION 

Effects of Solution Conditions on Positive Electrospray Protein Mass Spectra in the 

Presence of Carrier Ampholytes. The effects of carrier ampholyte concentration on the 

average charge states and the ion signals for protein analytes in ESIMS were studied in our 

previous work''. To investigate the effects of solution compositions typically employed in 

the coaxial liquid sheath flow, 0.1 mg/ml myoglobin and 0.5% pharmalyte 3-10 were prepared 

in various solution conditions and were infused at 0.3 nl/min through a home-built 

microelectrospray ionization source'^. Due to the application of the microelectrospray 

ionization source, a smaller electric voltage of 2 kV, in comparison with 4 kV when using the 

standard Finnigan electrospray needle, was employed in the direct infusion experiments. The 
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positive ESI mass spectra of myoglobin and pharmalyte 3-10 at various solution conditions 

are summarized in Fig. 1 for comparison. 

The ions of pharmalyte 3-10 were observed in the low m/z range up to m/z 1,000. For 

solutions containing either deionized water or a mixture of methanol and water (Fig. 1A-B), 

the pharmalyte ions successfully competed against the formation of myoglobin ions in the 

electrospray process. Thus, the pharmalyte ions similar to simple electrolyte ions led to 

higher solution conductivity and contributed to the establishment of the charge excess known 

to exist in droplets formed during the electrospray process. The suppression of protein ion 

intensity due to the addition of pharmalyte ions could be qualitatively accounted for by the 

ion competition theories of Tang and Kebarle^^"" and Wang and Cole^. 

Immediately after the addition of 1% acetic acid, the mass spectrum of myoglobin 

exhibited twelve peaks, each one corresponding to a different protonation state of myoglobin 

(Fig. IC). These protonation states ranged fi^om +9 to +20 with +15 being the most intense. 

There was no significant difference in the protein ion intensity before and after the addition of 

methanol into acetic acid solution (Fig. IC-D). By comparing the results shown in Fig. lA-

D, solution acidity played the most important role in protein protonation and favored protein 

analytes in competition with carrier ampholytes for the formation of gas phase ions in the 

electrospray process. No significant difference in the protein ion intensity was observed by 

raising the acetic acid concentration from 1 to 10% (data not shown). 

Effects of Sheath Liquid Flow Rate on Positive Electrospray Protein Mass 

Spectra in the Presence of Carrier Ampholytes. Achieving stable electrospray operation 

with a liquid sheath flow interface involves simultaneous optimization of multiple parameters 

including capillary dimensions, capillary position, sheath liquid flow rate and composition, 



www.manaraa.com

41 

gas sheath flow rate, and ESI conditions'* To study the effects of flow rates 

typically employed in the coaxial liquid sheath interface for CIEF-ESIMS, 0.1 mg^ml 

myoglobin and 0.5% pharmalyte 3-10 were prepared in deionized water and were infused at 

50 nl/min through a 50 ^m i.d./192 ^m o.d. flised-silica capillary in a standard Finnigan 

electrospray source. The infusion rate was nearly the same as the flow rate through the CIEF 

capillary during the mobilization step. A sheath liquid composed of 50% methanol, 49% 

water, and 1% acetic acid (v/v/v) at pH 2.6 was delivered at various flow rates using a syringe 

pump. 

The positive ESI mass spectra of myoglobin and pharmalyte 3-10 at various sheath 

liquid flow rates are summarized in Fig. 2 for comparison. The results shown in Fig. 2 

demonstrated that the coaxial liquid sheath interface was effective in establishing a consistent 

electrospray over a 17-fold change of sheath liquid flow rate (5 - 0.3 nl/min). In fact, Kirby et 

al.' combined optimal component sizes, tapered capillary tips, and adjustment of the 

capillary with respect to the liquid sheath tube to establish a nigged, stable liquid sheath 

interfacing procedure. The interface was particularly effective at low flow rates and allowed 

stable operation with a sheath liquid flow rate as low as 250 nl/min. 

In this study, the protein ion intensity decreased with increasing sheath liquid flow rate, 

indicating the effect of sample dilution. Additionally, protein analytes competed favorably 

with earner ampholytes for the formation of gas phase ions in the electrospray process at 

low sheath liquid flow rates. Based on the results shown in Figs. 1 and 2, a sheath liquid 

composed of 50% methanol, 49% water, and 1% acetic acid (v/v/v) at pH 2.6 was delivered at 

a flow rate of 0.3 ^1/min for all CIEF-ESIMS measurements using the coaxial liquid sheath 

interface. 
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Capillary Isoelectric Focusing-EIectrospray Ionization Mass Spectrometry Using 

Coaxial Liquid Sheath Interface. Due to cathodic mobilization, the acetate ions used in 

the sheath liquid competed with hydroxide ions for electromigration into the capillary. Since 

fewer hydroxide ions entered the capillary, the pH gradient drifted downward. Protein 

analytes previously focused at their pi values became positively charged and migrated toward 

the cathodic end. Thus, the basic protein cytochrome c migrated ahead of acidic proteins 

such as caibonic anhydrase I and n. The reconstructed ion electropherogram of the protein 

mixture with a final concentration of 0.1 mg/ml for each protein analyte is shown in Fig. 3 A. 

The reconstmcted ion electropherogram was obtained from mass scans between m/z 600 and 

m/z 2000 at a scan rate of 2 s/scan. All protein peaks were directly identified on the basis of 

mass spectra of protein analytes taken fi-om the average scans under the peaks. No 

significant difference in the protein ion intensity was observed by raising the acetic add 

concentration from 1 to 10% in the sheath liquid (data not shown). 

Poor linear correlation was observed between the migration times for the model proteins 

during the cathodic mobilization step in CIEF-ESIMS and their known pi values (Fig. 4A). It 

is known that progressive flow of non-hydroxyl anions (acetate ions in this study) in 

cathodic mobilization causes a progressive pH shift down the capillary, resulting in 

mobilization of proteins in sequence^^ The rate of pH change depends on the amount of 

anion moving into the capillary, the mobility of the anion, and the buffering capacity of 

carrier ampholytes. Basic and neutral proteins are therefore more efficiently mobilized 

toward the cathode, the end of the capillary for all ESIMS measurements. However, acidic 

proteins at the far end of the capillary are mobilized with low efficiency and may exhibit 

additional zone broadening. 
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Capillary Isoelectric Focusing-Electrospray Ionization Mass Spectrometry Using 

MIcrodialysis Junction. The microdialysis junction provides the necessary electrical 

connection across the dialysis membrane for defining the electric fields needed for the CIEF 

separation and the electrospray process. Additionally, the microdialysis jimction containing 

10% acetic acid solution acidified protein analytes eluted from the CIEF capillary during the 

pressure mobilization step. Excess acetic add used in the microdialysis junction facilitated 

and enhanced buffer exchange for solution acidification and protein protonation. 

The reconstructed ion electropherogram of the protein mixture with a final 

concentration of 0.01 mg/ml for each protein analyte is shown in Fig. 3B. The reconstructed 

ion electropherogram was obtained fi'om the mass scan between m/z 600 and m/z 2000 at a 

scan rate of 2 s/scan. Due to the use of pressure mobilization and the location of anodic end 

at the end of the CIEF capillary, acidic proteins such as carbonic anhydrase I and n were 

eluted ahead of basic protein of cytochrome c. All protein peaks were directly identified on 

the basis of mass spectra of protein analytes taken from the average scans under the peaks. 

A major factor for causing reduced sensitivity in the coaxial liquid sheath interface was 

the large dilution factor and background ion production due to the introduction of makeup 

liquid. The flow rate at the ESI emitter with the microdialysis junction was nearly the same 

as the flow rate through the CIEF capillary. There was no significant fluid addition through 

the dialysis membrane, only ionic transfer and buffer exchange. By comparing the results 

shown in Fig. 3 A-B, there was a substantial gain in both signal intensity and signal/noise ratio 

using the microdialysis junction interface even though the protein analytes were diluted by 

10-fold. The results indicated that at least an order of magnitude improvement in detection 

limits for the CIEF-ESIMS measurements could be achieved using the microdialysis junction. 
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The CIEF separation capillary and the short (1 cm), sharply tapered ESI emitter 

capillary were butted together without leaving any intentional gap inside the microdialysis 

tubing. The design of the microdialysis jimction minimized any additional analyte band 

broadening while migrating through the junction and the ESI emitter capillary. The design 

allowed high-efficiency CIEF separation to be maintained through the interface (Fig. 3B). In 

fact, two isoforms of cytochrome c were resolved in CIEF-ESIMS using the microdialysis 

junction with pressure mobilization. 

During pressure mobilization, it was necessary to apply an electric field across the 

capillary in order to maintain focused protein zones. In the presence of an electric field, the 

zone-sharpening effect, the characteristic of isoelectric focusing, minimized any additional 

band broadening contributed by the parabolic shape of the hydrodynamic flow. In 

comparison with cathodic mobilization, pressure mobilization maintained the relative 

position of protein analytes during mobilization. As a result, better separation resolution 

among acidic proteins of two carbonic anhydrase H (pl 5.4 and pi 5.9) was obtained using 

pressure mobilization (Fig. 3B) than applying the combination of cathodic and gravity 

mobilization (Fig. 3A). Additionally, the linear correlation coefficients of 0.99 and 0.97 

between the migration time and protein's pi were obtained in the pH ranges of 5-8 and 5-10, 

respectively (Fig. 4B). 

Lamoree et al. introduced a coupled-capillary setup, which incorporated a 

microdialysis device between a CIEF separation capillary and a transfer capillary, for on-line 

coupling of CIEF with ESIMS^^. In their setup, carrier ampholytes eluted from the CIEF 

capillary were removed in a dialysis tubing and the protein analytes were subsequently 

delivered into ESIMS through a 40-cm-long transfer capillary. At the end of the transfer 
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capillary, a sheath liquid composed of methanol, water, and acetic acid was employed in the 

coaxial liquid sheath interface for establishing necessary electrical connection. Again, there 

was no apparent loss in separation efficiency and resolution of focused protein zones across 

the microdialysis junction. However, significant reduction in separation resolution was 

observed in the reconstructed ion electropherqgram due to analyte diffusion and the absence 

of a pH gradient for maintaining the focused protein zones in the transfer capillary. 

The infusion of the catholyte (0.3% ammonium hydroxide) into the CEEF capillary 

occurred during the pressure mobilization step. Thus, the reproducibility of migration time 

and peak area in CIEF-ESIMS was investigated by performing consecutive runs in the same 

CIEF capillary. In general, at least 10 consecutive runs with the average coefficients of 

variation (% CV), which ranged from 5% for migration time to 12% for peak area, were 

obtained using the polyacrylamide coated capillary. The reproducibility and the lifetime of 

coated capillary employed in the microdialysis junction were comparable to those observed in 

CIEF-ESIMS using the coaxial liquid sheath interface. 

The mass spectra taken from the average scans under the peaks of cytochrome c (Fig. 

3 A-B) are shown in Fig. 5A-B for comparison. The mass spectrum of cytochrome c obtained 

from CIEF-ESIMS using the coaxial liquid sheath interface displayed two separate 

electrospray ionization envelopes (Fig. 5A). The charge states of these two envelopes 

centered at +14 and +8, corresponding to the denatured and intermediate conformation states 

of cytochrome The mass spectrum of native cytochrome c in deionized water ranged 

from +7 to +12 with +10 being the most intense (data not shown). The intermediate state of 

cytochrome c exhibited a relatively tight conformation and accepted far fewer protons than 

the native state^^. On the other hand, the mass spectrum obtained from CIEF-ESIMS using 
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the microdialysis junction was mainly contributed by the denatured cytochrome c (Fig. SB). 

The observation of three conformational states is in concert with the eariier results of add 

unfolding of cytochrome c studied by add-base titrations, spectrophotometry, drcular 

dichroism, fluorescence, viscometiy, and ESIMS^^^®. 
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FIGURE LEGENDS 

Fig. 1 Positive ESI mass spectra of myoglobin and pharmalyte 3-10 obtained at various 

solution conditions: (A) deionized water, (B) 50% methanol and 50% water (v/v), 

(C) 50% methanol, 49% water, and 1% acetic acid (v/v/v), and (D) 1% acetic acid. 

Fig. 2 Positive ESI mass spectra of myoglobin and pharmalyte 3-10 obtained at various 

sheath liquid flow rates: (A) 5 fil/min, (B) 3 jil/min, (C) 1 jxl/min, (D) 0.5 fil/min, (E) 

0.3 nl/min. 

Fig. 3 CIEF-ESIMS separations of model proteins using (A) the coaxial liquid sheath 

interface with a concentration of 0.1 mg/'ml for each protein, and (B) the 
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micTodialysis junction with a concentration of 0.01 mg^ml for each protein. Model 

proteins included: (1) carbonic anhydrase II (pi 5.4); (2) carbonic anhydrase n (pi 

5.9); (3) and (4), carbonic anhydrase I (pi 6.6); (5) and (6), myoglobin (pi 6.8 and 

7.2); and (7) and (8) cytochrom c (pi 9.6). 

Fig. 4 Calibration curves of migration time versus protein's pi in CIEF-ESIMS using (A) 

the coaxial liquid sheath interface and (B) the microdialysis junction. 

Fig. 5 Positive ESI mass spectra taken from the average scans under the peaks of 

cytochrome c in CIEF-ESIMS using (A) the coaxial liquid sheath interface (from Fig. 

3 A) and (B) the microdialysis junction (from Fig. 3B). 
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ABSTRACT 

On-line combination of capillary isoelectric focusing (CIEF) with electrospray 

ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICRMS) is 

demonstrated for high resolution analysis of model proteins, human hemoglobin variants, and 

Escherichia coli proteins. The acquisition of high-resolution mass spectra of hemoglobin p 

chains allows direct identification of hemoglobin variants A and C, which differ in molecular 

mass by only I dalton. The masses of cellular proteins separated in the CIEF capillary are 

detected using their isotopic envelopes obtained from ESI-FTICRMS. The factors which 

dictate overall performance of CEEF-ESI-FTICRMS, including duty cycle, mass resolution, 

scan rate, and sensitivity, are discussed in the context of protein variants and cdl lysates 

analyzed in this study. 
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INTRODUCTION 

Significant advances in Fourier transform ion cyclotron resonance mass spectrometry 

(FTICRMS) over recent years involved improved interface with external ion sources novel 

ion-manipulation techniques within the trapped ion cell^^, and enhanced data processing 

approaches^ '. The advantages of FTICRMS include the ability to simultaneously realize 

ultrahigh MS resolution, mass measurement accuracy, and high sensitivity. Additionally, 

FTICRMS provides the capability for high order tandem MS analyses for structural studies 

due to its nondestructive detection method'""'^. 

The combination of electrospray ionization (ESI) with FTICRMS was pioneered by 

McLafferty and co-workers". The use of ESI-FTICRMS demonstrated extensive potential 

for the characterization of biopolymers'"* with part-per-million mass accuracy and mass 

resolving power exceeding 10®. The ESI-FTICR mass spectra provide the ability to 

distinguish species with similar masses, and identify adducts, post-translational 

modifications, and substitutions. Resolution of the 1-dalton spacing of peaks (primarily due 

to "C isotopic distributions) allows unambiguous determination of charge (and thus mass) 

from a single charge state. 

The coupling of ESI with FTICRMS requires the transport of the ions between the ion 

source at atmospheric pressure and the trapped ion cell at pressure below 10"' torr. The ESI-

FTICR instrumentation developed by Winger et al.'^ allows rapid manipulation of pressures 

in the FTICR cell between those that appear optimum for ion trapping and cooling (i.e., > 10" 

^ torr) and those for high resolution detection (< 10"' torr). The features of this 

instrumentation include five differentially pumped regions, two high-speed shutters to 

enhance differential pumping in regions close to the ESI source, and an integral cryopump 
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that extends into the bore of the 7-Tesla superconducting magnet, providing effective 

pumping speeds of > 10^ L/s in close proximity to the trapped ion cell. 

The off-line combination of capillary zone electrophoresis (CZE) with FTICRMS using 

matrix-assisted laser desorption/ionization was demonstrated by Wilkins and co-workers^®. 

However, the mass resolution was insufficient to resolve the 1-dalton spacing of isotopic 

constituents within the singly and doubly charged species. In comparison with the ESI 

process, the multiple charging phenomenon inherent in ESI is particulaily advantageous to the 

FTICRMS detection scheme as resolving power is inversely proportional to m/z. 

Additionally, the use of the ESI process facilitates on-line interfacing of FTICRMS with 

separation methodologies of HPLC and CZE. Thus, the high pumping speed afforded by the 

cryopumping arrangement'^ provides the relatively rapid mass spectral acquisition rates and 

is crucial to on-line integration of ESI-FTICRMS with high speed separation technique such 

as CZE'"'. 

Immediately after the first demonstration of on-line CZE-ESI-FTICRMS'^, recent 

results have suggested that the combination may provide a near ideal approach for 

microsample analyses owing to the inherent sensitivity of the technique and the enhanced 

information content available from high-resolution and high-precision mass measurements^®" 

High-resolution mass spectra (average resolution > 45,000 fixll width at half-maximum, 

fwhm) of both the a and b chains of hemoglobin were acquired from the injection of 10 human 

erythrocytes, which corresponded to 4.5 fmole of hemoglobin''. By employing multiple 

frequency sustained off-resonance irradiation for collisional dissociation of ions in the 

trapped ion cell'^ a partial amino acid sequence for the a chain of human hemoglobin was 

obtained from the injection of a population of 75 erythrocytes^". High order tandem MS 
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measurements offered the potential for sensitive peptide finger-printing and the ability to 

distinguish relatively small variations in biopolymer composition'®. 

In this study, on-line combination of capillary isoelectric focusing (CEF) with ESI-

FTICRMS is presented for the characterization of model proteins, human hemoglobin 

variants, and Escherichia coli (E. coli) proteins. In addition to high resolution separation of 

CIEF, FTICRMS affords higli-resolution and high-precision mass measurements for protein 

analytes. The focusing effect of CBEF further permits analysis of dilute protein samples with 

a typical concentration factor of 50-100 times. With the fiill genome of several 

microorganisms having been sequenced and that of the human genome well underway, the 

analysis of the corresponding proteomes begins to come into sight^^ Two-dimensional 

analysis of cellular proteins using CIEF-ESI-FTICRMS provides a m^or step towards the 

comprehensive characterization of complex biological processes such as development, 

differentiation, and signal transduction in the field of cellular biochemistry. 

EXPERIMENTAL SECTION 

Materials and Chemicals. Model proteins, including cytochrome c (horse heart, pi 9.6), 

myoglobin (horse heart, pi 7.2 and 6.8), caibonic anhydrase I (human erythrocyte, pi 6.6), 

and carbonic anhydrase 11 (bovine erythrocyte, pi 5.9), were purchased fi-om Sigma (St. 

Louis, MO). Another batch of bovine carbonic anhydrase II obtained from Sigma exhibited a 

pi of 5.4. Human hemoglobin variants A (pi 7.10), C (pi 7.50), S (pl 7.25), and F (pi 7.15) 

were acquired from Isolab (Akron, OH). 

ThejEl coli cells were suspended in a buffer which consisted of 10 mM Tris-HCl (pH 

7.0), 5 mM magnesium chloride, 0.1 mM dithiothreitol, and 10% glycerol. The cells were 

disrupted by sonication for the release of cellular proteins^^. After sonication, DNase (Sigma) 
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was added with a final concentration of SO (ig/ml for the digestion and removal of nucleic 

acids. The cellular proteins were collected in the supernatant by centrifugation at 2000g for 

10 min. The protein solution was then desalted using a microdialysis setup^. The total 

protein concentration of the resulting solution determined by the Bradford method (Bio-Rad 

kit, Richmond, CA) was around 12 mg/ml. 

Fused-silica capillaries with 50 fun i.d. and 192 jim o.d. (Polymicro Technologies, 

Phoenix, AZ) were coated internally with linear polyacrylamide for the elimination of 

electroosmotic flow and protein adsorption onto the capillary wall^'^. Carrier ampholytes, 

pharmalyte 3-10 and 5-8, were obtained from Pharmacia (Uppsala, Sweden). All chemicals, 

including acetic acid, ammonium acetate, ammonium hydroxide, dithiothreitol, glycerol, 

magnesium chloride, methanol, phosphoric acid, sodium hydroxide, Tris-HCl were acquired 

from Fisher (Fair Lawn, NJ). All background electrolytes and sample solutions were 

prepared using water purified by a Nanopure II system (Branstead, Dubuque, LA) and further 

filtered with a 0.22 fim membrane (Millipore, Bedford, MA). 

Electrospray lonization-Fourier Transform Ion Cyclotron Resonance Mass 

Spectrometry. The 7-Tesla ESI-FTICR mass spectrometer utilized in this study was 

described in detail elsewhere'^. Briefly, ions were transferred from the ESI source, through a 

heated metal capillary, to the trapped ion cell by two sets of radio frequency (rf)-only 

quadrupoles. Background pressure in the trapped ion cell was maintained at 10"' - 10*'° torr 

by a custom cryopumping assembly consisting of two sets of ciyobaffels with radiation 

shields which were maintained at 77 and 14 K, respectively, by closed cycle cryogenic 

compressors. 
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The large surface area of the ciyobaffels provided pumping speeds in excess of 10^ L/s, 

permitting rapid transitions between the high-efificiency, high-pressure ion accumulation (> 

10'^ torr) and the low-pressure detection events (< 10"' torr). The spectrometer vacuum 

system was also equipped with a pair of electromechanical shutters which blocked the 

conductance limits during non-injection events, aiding differential pumping and improving the 

vacuum quality. The heated desolvation capillary in the ESI source was held at 180 °C. 

Tuning and calibration of the mass spectrometer were established using an acetic add solution 

(methanol/water/acetic acid, 50:49:1 v/v/v) containing myoglobin and a small peptide of 

methionine-arginine-phenylalanine-alanine. 

Capillary Isoelectric Focusing-Electrospray lonization-Fourier Transform Ion 

Cyclotron Resonance Mass Spectrometry. The CIEF apparatus was constructed in-house 

using a CZE lOOOR high-voltage (HV) power supply (Spellman High-Voltage Electronics, 

Plainview, NY). All on-line CIEF-ESI-FTICR measurements were performed using a coaxial 

liquid sheath flow configuration" in a standard Finnigan (San Jose, CA) MAT ESI source. A 

30-cm-Iong coated capillary was mounted within the electrospray probe. The capillary was 

filled with a solution containing 0.5% pharmalyte and protein sample. The outlet reservoir, 

containing 20 mM sodium hydroxide as the catholyte, was located inside the electrospray 

housing during the focusing step. The inlet reservoir, containing 20 mM phosphoric acid as 

the anolyte, was kept outside at the same height as the outlet reservoir. Focusing was 

performed at a 15 kV constant voltage for approximately 10 min. 

Once the focusing was complete, the electric potential was turned off, and the outlet 

reservoir was removed. The capillary tip was fixed about 0.5 mm outside the electrospray 

needle. A sheath liquid composed of 50% methanol, 49% water, and 1% acetic acid (v/v/v) at 
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pH 2.6 was delivered at a flow rate of 1 jd/tnin using a Harvard Apparatus 22 syringe pump 

(South Natick, MA). During the cathodic mobilization step, two HV power supplies were 

used for delivering the electric potentials of 19 kV and 4 kV to the inlet electrode and 

electrospray needle, respectively. To speed up protein mobilization and minimize the 

formation of moving ionic boundary inside the CIEF capillary^*^^, gravity mobilization was 

combined with cathodic mobilization by raising the inlet reservoir 8 cm above the 

electrospray needle. 

A typical CIEF-ESI-FTICRMS pulse sequence consisted of four events^": 0.4 s ion 

injection/accumulation, 1 s ion cooling/pumpdown, 835 ms rf excitation and ion detection, and 

5 ms quench, resulting in a total scan duration of 2.24 s. A "quench" event was employed at 

the end of the pulse sequence to eject ions from the cell prior to the next measurement. 

Broad-band swept excitation over a 500 kHz bandwidth with a 85 Hz/ms sweep rate was 

followed by detection of 256K data points at 313 kHz (low m/z = 700), resulting in a 835 ms 

time domain signal. Trap potentials of 4 and 5 V were applied during ion injection and 

accumulation, respectively. Trap potentials were maintained at 5 and 0.5 V during pump 

down and ion excitation/detection, respectively. Electronics and all aspects of data 

acquisition and processing were controlled by an Odyssey (Extrel FTMS, Madison, WI) data 

station running Odyssey version 2.0 software. 

RESULTS AND DISCUSSION 

In CIEF, the coated fiised-silica capillary contained not only carrier ampholytes for the 

creation of a pH gradient but also proteins^^*^®*^'. When an electric potential was applied, the 

negatively charged acidic ampholytes migrated toward the anode and decreased the pH at the 

anodic section, while the positively charged basic ampholytes migrated toward the cathode 
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and increased the pH at the cathodic section. Protein analytes as amphoteric macromolecules 

also focused at their isoelectric points (pis) in narrow zones in the same way as the individual 

ampholytes. 

Theoretically, there was no movement in the coated capillary when the focusing was 

complete. Thus, the entire pH gradient, along with the focused protein zones, had to be 

mobilized into the mass spectrometer. To initiate cathodic mobilization, the acetate ions used 

in the sheath liquid competed with hydroxide ions for electromigration into the capillary. 

Since fewer hydroxide ions entered the capillary, the pH gradient drifted downward. Protein 

analytes previously focused at their pi values became positively charged and migrated toward 

the cathodic end. Additionally, a gravity-induced hydrodynamic flow was introduced by 

raising the inlet reservoir. 

Thus, basic protein of cytochrome c migrated ahead of acidic proteins such as carbonic 

anhydrase I and II in a 0.5% pharmalyte 3-10 solution during the CIEF-ESI-FTICRMS 

analysis (Fig. 1). The reconstructed ion electropherogram of the protein mixture with a final 

concentration of 0.1 mg/ml for each protein analyte was obtained from the ions between m/z 

700 and m/z 3000 at a scan rate of 2.24 s/scan. All protein peaks were directly identified on 

the basis of mass spectra of protein analytes taken from the average scans under the peaks. 

High-resolution mass spectra of cytochrome c, myoglobin, and carbonic anhydrase II are 

presented in Fig. 2. This acquisition rate compares favorably with that employed for 

quadrupole systems over a similar m/z range, but provides mass spectrometric resolution for 

each species, in excess of 45,000 (fwhm), much higher than possible with any alternative 

analyzer. 
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The pumping system used in this study facilitated rapid pressure changes, covering the 

pressure range required in about 1 s. Still, the "pumpdown" event accounted for 45% of the 

experimental duration while the ion injection interval accounted for less than 18% of the 

experimental time. Thus, the ionization duty cycle was relatively poor with the single ceil 

configuration. To provide both improved ionization duty cycle and more rapid scan speed, 

alternative configurations include the incorporation of two trapped ion cells, one for hi^ 

pressure ion accumulation and one for low pressure ion detection. Similarly, accumulation of 

ions in an external multipole (e.g., quadrupole) prior to injection into the trap and avoiding the 

need for introduction of a gas and thus pumpdown, has recently been demonstrated and may 

be useful for interfacing with on-line separations^"'^^ 

To investigate the resolving power of CIEF-ESI-FTICRMS, a mixture of human 

hemoglobin variants A, C, S, and F was prepared in a 0.5% pharmalyte 5-8 solution with a 

total concentration of 0.1 mg/ml. The reconstructed ion electropherogram of hemoglobin 

variants was obtained from the ions between m/z 700 and m/z 3000 at a scan rate of 2.24 

s/scan (Fig. 3). Hemoglobin variants F and A, the wild type fetal and adult hemoglobins, 

were baseline separated and resolved in CBEF-ESI-FTICRMS with a pi difference of 0.05 pH 

units. 

Hemoglobin A is a tetramer of two a globin and two p globin chains, each carrying a 

heme moiety. An example of the mass spectra obtained from the average scans under the 

peaks of Fig. 3 is presented in Fig. 4 A for hemoglobin A. Two separate ESI envelopes with 

different ion intensities were observed for the a and p chains. The presence of two separate 

electrospray envelopes indicated the dissociation of hemoglobin A tetramer due to the heating 

and/or collisional excitation in the interface region. On the other hand, intact heterodimeric 
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and tetrameiic forms of hemoglobin A could be obtained in the electrospray process by 

adjusting the atmosphere-vacuum interface conditions^^. Differences in the relative stabilities 

of tetrameric proteins, including concanavalin A and hemoglobin formed from the know 

solution structures, were qualitatively consistent with the gas-phase stability observed in the 

electrospray process. 

In comparison with normal hemoglobin A, the substitution of glutamic acid in position 

6 by valine in the p chain of hemoglobin S results in sickle-cell anemia. The substitution of 

glutamic acid in position 6 by lysine in the p chain of hemoglobin C changes the pi by 0.5 pH 

units (Fig. 3). At the same time, the change in molecular mass is less than 1 dalton. In our 

previous study of human hemoglobins^^, the elution of hemoglobin variants C and A was 

monitored using the same m/z ion of 1133 in the selected ion monitoring mode due to the 

limited mass resolution in a triple quadrupole mass spectrometer. The identification of 

hemoglobin variants C and A, however, was established by their elution order in the CIEF 

separation. In contrast, the high mass resolution of ESI-FTICRMS was illustrated using the 

resolution of the isotopes within the +15 charge state of the p chains (Fig. 5) and provided 

unambiguous identification of hemoglobin variants C and A. 

In this study, the mass accuracy of 1-5 ppm between the expected and the measured 

molecular masses was routinely obtained for all CIEF-ESI-FTICRMS measurements. The 

FTICRMS technique has long been recognized for high mass-precision mass measurement 

even in the absence of calibrant ions. Early experiments by Henry et al.^^ demonstrated that 

the isotopically resolved peaks of myoglobin exhibited an error of only 1 ppm. In later work 

with an improved data system, the isotopically resolved peaks yielded mass accuracies with 
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subpart per million errors^^. Still later, ESI/FTICR mass accuracies were reduced below the 

100 ppb level in the assignment of fragment ions of ubiquitin'^. 

A solution containing 0.5% carrier ampholytes (pharmalyte 5-8 and pharmalyte 3-10 at 

a ratio of 3:1) and K coli proteins was used for all CEEF-ESI-FTICR measurements. The 

blending of pharmalyte not only gave an effective separation range between pH 3.5 and 9.5, 

but also enhanced separation resolution and pH gradient in the range of 5-8. A total of 7 mg 

(12 mg/ml X 0.59 ^1 of capillary volume) of£". coli proteins was loaded in the CIEF capillary. 

The reconstmcted ion electropherogram is shown in Fig. 6A and reveals various protein 

zones with different pi values. The mass spectra obtained from the average scans under the 

peaks 2, 9, and 12 are summarized in Fig. 6B-D, respectively. 

Resolution of '^C isotopic distributions obtained fi-om ESI-FTICRMS allowed 

unambiguous determination of charge and protein mass fi-om a single charge state (Fig. 6B-D). 

Due to the limitation in the size of data file for the analysis of E. coli proteins, the number of 

data points in each scan and the detection interval were decreased to 128K and 400 ms, 

respectively. Thus, the mass resolution was reduced to 22,000 (fwhm) and provided the 

isotopic resolution for proteins up to 16,000 daltons. The isotopic resolution facilitated the 

direct and rapid mass determination without reliance upon a distribution of charge states and 

the need for a deconvolution program. In fact, the limitations of various computer softwares 

for the deconvolution of protein masses in the complex ESI mass spectra remain to be 

investigated. For example, the upper limit for the number of protein electrospray envelopes 

which can be reliably and confidently deconvoluted has to be addressed. 

The advantages of ESI-FTICRMS in mass resolution and detection sensitivity for the 

analysis of complex protein mixtures were illustrated using a mass spectrum taken from the 
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average scans under the peak 6 (Fig. 7). The mass spectrum displayed a m^or protein 

electrospray envelope with a deconvoluted mass of 28,825 daltons. Additionally, one minor 

protein with molecular mass of 9,129 daltons was directly identified on the basis of its 

isotopic distribution. In the absence of high-mass resolution routinely obtained from ESI-

FTICRMS, this minor protein would be easily missed by quadrupole analyzers equipped 

with any electrospray deconvolution software. It is known that the potential ion 

suppression effect of highly charged or dominant proteins against other protein analytes 

coeiuted from the CIEF capillary affects the qualitative and quantitative determination of 

protein molecules in ESIMS. 

By analyzing all protein zones in the reconstructed ion electropherogram, a total of 112 

protein molecules with molecular mass less than 16,000 daltons were measured using their 

isotopic distributions. As mass resolving power is directly proportional to the length of the 

detection interval and inversely proportional to m/z, achieving high resolution, at very high 

m/z in particular, may require acquisition of a relatively long transient signal during the 

detection period. For example, Lamoree et al.'^ has produced the FTICR mass spectra of 

small proteins with resolving power in excess of 2.8 x 10®. However, this resolving power is 

not without a price as long detection intervals (> 2 min), very large data files (> 8 million data 

points), and substantially increased processing times are required. 

The reduction elution speed method introduced by Goodlett et al.^' provides an 

approach toward circumventing what at first glance appears to be an inherent incompatibility 

between high resolution CIEF separation and high resolution FTICRMS detection. As 

demonstrated in CZE-ESIMS, the method involves only stepwise changes in the electric field 

strength and is thus readily implemented. Prior to elution of the first analyte peak, the 
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electric field strength is decreased, resulting in slower migration velocities and wider elution 

profiles. The reduction elution speed method thus facilitates the acquisition of more, or 

longer, MS scans. 

Additionally, the mass resolving power is directly proportional to magnetic field 

strength. For ©cample, the 7-Tesla instrument employed in this study yielded a mass 

resolving power of 45,000 from an 835 ms transient. A 12-Tesla instrument is expected to 

yield a resolution of 77,000 from an 835 ms transient of the same protein species. 

Furthermore, FTICR spectrometers based on higher magnetic field strengths will require 

shorter detection intervals for achieving the same mass resolution. A 12-Tesla instrument 

should require only 487 ms to obtain a resolution of 45,000 for the same protein species. 

Future work in the application of CIEF-ESI-FTICRMS for the analysis of cell lysates 

is based on the development of a 12-Tesla FTICR system. Ultrahigh mass resolution for 

large biopolymers is particularly attractive for applications involving the identification of 

protein variants, post-translational modifications, and unambiguous detection of adducts. 

Resolution of the isotopic envelope is essential for collisionally activated dissociation (CAD) 

studies of large mutiply-charged molecules, providing the only broadly applicable method of 

charge state determination for the CAD products. The great potentials of combining high 

resolution/preconcentration CIEF separation with ultrahigh resolution, mass measurement 

accuracy, and high sensitivity of ESI-FTICRMS are waiting to be explored and employed for 

various biomedical, biopharmaceutical, and environmental applications. 



www.manaraa.com

68 

ACKNOWLEDGEMENT 

The authors wish to thank The authors wish to thank Ms. Leila Mosavi and Dr. James 

Bruce for providing E. colt cells and helpful discussion in FTICRMS, respectively. The 

authors also wish to acknowledge the Microanalytical Instiimientation Center of the Institute 

for Physical Research and Technology at Iowa State University, the U.S. Department of 

Energy, and Laboratory Directed Research and Development of Pacific Northwest 

Laboratory for support of this research. Pacific Northwest Laboratory is operated by 

Battelle Memorial Institute for the U.S. Department of Energy, through Contract No. DE-

AC06-76RLO 1830. C.S.L. is a National Science Foundation Young Investigator (BCS-

9258652). 

REFERENCES 

1. Lebrilla, C. B.; Amster, I. J.; Mclver, R T. Int. J. Mass Spectrom. Ion Proc. 1989, 87, 

R7. 

2. Kofel, P.; McMahon, T. B. IrtL J. Mass Spectrom. Ion Proc. 1990,98, 1. 

3. Beu, S. C.; Laude, D. A. Int. J. Mass Spectrom. Ion Proc. 1991, 104,109. 

4. Hofstadler, S. A.; Schmidt, E.; Guan, Z.; Laude, D. A. J. Am. Sac. Mass Spectrom. 

1993,4, 168. 

5. Gauthier, J. W.; Trautman, T. R.; Jacobson, D. B. Anal. Chim. Acta 1991,246,211. 

6. Guan, S. H.; Kim, H. S.; Marshall, A. G.; Wahl, M. C.; Wood, T. D.; Xiang, X. Z. 

Chem. Revs. 1994, 94, 2161. 

7. Bruce, J. E.; Anderson, G. A.; Smith, R. D. Anal. Chem. 1996, 68, 534. 



www.manaraa.com

69 

8. Bruce, J. E.; Anderson, G. A.; Hofstadler, S. A.; Winger, B. E.; Smith, R. D. Rapid 

Comm. Mass Spectrom. 1993, 7, 700. 

9. Guan, S. H.; Wahl, M. C.; Marshall, A. G. Anal. Chem. 1993,65, 3647. 

10. Marshall, A. G.; Grosshans, P. B. Anal. Chem. 1991,63, A2I5. 

11. Koster, C.; Kahr, M. S.; Castoro, J. A.; Wilkins, C. L. Mass Spectrom. Rev. 1992, 11, 

495. 

12. Buchanan, M. V.; HetQch, R. L. Anal. Chem. 1993, 65, A245. 

13. Henry, K. D.; Quinn, J. P.; McLafFerty, F. W. J. Am. Chem. Soc. 1991, 113, 5447. 

14. Bue, S. C.; Senko, M. W.; Quinn, J. P.; McLafFerty, F. W. J. Am. Soc. Mass Spectrom. 

1993,4, 190. 

15. Winger, B. E.; Hofstadler, S. A.; Bruce, J. E.; Udseth, S. R.; Smith, R. D. J. Am. Soc. 

Mass Spectrom. 1993,4, 566. 

16. Castoro, J. A.; Chiu, R. W.; Monnig, C. A.; Wilkins, C. L. J. Am. Chem. Soc. 1992,114, 

7571. 

17. Hofstadler, S. A; Wahl, J. H; Bruce, J. E.; Smith, R. D. J. Am. Chem. Soc. 1993, 115, 

6983. 

18. Hofstadler, S. A.; Wahl, J. H.; Bakhtiar, R.; Anderson, G. A.; Bruce, J. E.; Smith, R. D. 

J. Am. Soc. Mass Spectrom. 1994, 5, 894. 

19. Hofstadler, S. A.; Swanek, F. D.; Gale, D. C.; Ewing, A. G; Smith, R_ D. Anal. Chem. 

1995,67, 1477. 

20. Hofstadler, S. A; Severs, J. C.; Smith, R. D.; Swanek, F. D.; Ewing, A. G. J. High 

Resol. Chromatogr. 1996,19,617. 



www.manaraa.com

70 

21. Kahn, P. 5c/ewce 1995,270,369. 

22. Schleif, R. F.; Wensink, P. C. Practical Methods in Molecular Biology; Springer-Veriag: 

New York, 1981; Chapter 1. 

23. Liu, C.; Wu, Q.; Harms, A. C.; Smith, R. D. Anal. Chem. 1996,68, 3295. 

24. Kilar, F.; Hjerten, S. Electrophoresis 1989,10, 23. 

25. Smith, R. D.; Wahl, J. H.; Goodlett, D. R.; Hofstadler, S. A. Anal. Chem. 1993, 65, 

574A. 

26. Foret, F.; Thompson, T. J.; Vouros, P.; Karger, B. L.; Gebauer, P.; Bocek, P. Anal. 

Chem. 1994,66, 4450. 

27. Tang, Q.; Harrata, A. K.; Lee, C. S. Anal. Chem. 1996,68,2482. 

28. H5erten, S.; Zhu, M. D. J. Chromatogr. 1985, 346, 265. 

29. Hjerten, S.; Liao, J. L.; Yao, J. J. Chromatogr. 1987,387, 127. 

30. Bumier, R. C.; Cody, R. B.; Preiser, B. S. J. Am. Chem. Soc. 1982, 104, 7436. 

31. Goodlett, D. R.; Wahl, J. H.; Udseth, H. R.; Smith, R. D. J. Microcol. Sep. 1993, 5, 57. 

32. Light-Wahl, K. J.; Schwartz, B. L.; Smith, R. D. J. Am. Chem. Soc. 1994, 116, 5271. 

33. Beu, S. C.; Senko, M. W.; Quinn, J. P.; Wampler, F. M.; McLafferty, F. W. J. Am. Soc. 

Mass Spectrom. 1993,4, 557. 

34. Senko, M. W.; Speir, J. P.; McLafferty, F. W. Anal. Chem. 1994,66, 2801. 

35. Lamoree, M. H.; Reinhoud, N. J.; Tjaden, U. R.; Nissen, W. M. A.; van der Greef, J. J. 

Biol. Mass Spectrom. 1994,23, 339. 



www.manaraa.com

FIGURE LEGENDS 

Fig. 1 CIEF-ESI-FTICRMS electropherogram of a mixture of model proteins: (1) 

cytochrome c (pl 9.6); (2) and (3), myoglobin (pi 6.8 and 7.2); (4) and (5), carbonic 

anhydrase I (pi 6.6); (6) carbonic anhydrase II (pi 5.9); (7) carbonic anhydrase n 

(pi 5.4). 

Fig. 2 Positive ESI mass spectra of (A) cytochrome c, (B) myoglobin, and (C) carbonic 

anhydrase II (pi 5.4) taken from the average scans under the peaks shown in Fig. 1. 

Fig. 3 CIEF-ESI-FTICRMS electropherogram of a mixture of human hemoglobin variants 

C, S, F, and A. 

Fig. 4 Positive ESI mass spectra of (A) hemoglobin A and (B) hemoglobin S taken from 

the average scans under the peaks shown in Fig. 3. 

Fig. 5 High resolution FTICR spectra of the +15 charge state of the p chains in (A) 

hemoglobin A and (B) hemoglobin C. The spectra were taken from the average 

scans under the peaks shown in Fig. 3. 

Fig. 6 (A) CIEF-ESI-FTICRMS electropherogram of E. coli proteins. The positive ESI 

mass spectra were taken from the average scans under the peaks 2 (B), 9 (C), and 12 

(D). 

Fig. 7 The positive ESI mass spectrum taken from the average scans under the peaks show 

in Fig. 6A. 
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CHARACTERIZATION OF CARBOHYDRATE STRUCTURES IN 

GLYCOPROTEIN USING EXOGLYCOSIDASE ENZYME ARRAY DIGESTION-

LC/MS/MS WITH PARENT ION MONITORING 

Liyu Yang, A. Kamel Harrata, and Cheng S. Lee 

A paper submitted to J. Chromatogr. 

ABSTRACT 

An integrated approach, involving the combination of an exoglycosidase enzyme array 

with LC/MS/MS, for structural characterization of carbohydrates in a glycoprotein is 

demonstrated using ribonuclease B as a model system. In the exoglycosidase enzyme array, 

a tryptic digest of a glycoprotein is divided into several aliquots and each aliquot is incubated 

with a precisely defined mixture of exoglycosidases. The extent of exoglycosidase digestion 

in each aliquot is monitored using LC/MS/MS for selectively detecting and locating 

glycopeptides in the reaction mixture. The changes in molecular mass of glycopeptides 

correspond to the loss of integral numbers of monosaccharide residues. The results of a 

series of controlled digestions with a specific combination of exoglycosidases in the enzyme 

array provide the sequence and linkage of individual glycan species attached to glycopeptides 

and glycoproteins. 
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1. INTRODUCTION 

The growth of the biotechnology industry, and more specifically recombinant DNA 

derived protein biopharmaceuticals, has placed enormous demands on bioanalytical 

chemistry for protein characterization. Recent studies implicate glycoproteins in many 

biological processes including protein targeting, cell-cell recognition, and antigen-antibody 

reaction [1-3]. The carbohydrate moieties of recombinant glycoproteins of pharmaceutical 

interest can have direct or indirect influence on the activity of glycoprotein, possible roles in 

clearance from circulation, and effects on the solubility and stability of protein [4], The 

sugar moieties of erythropoietin have been directly linked to the secretion and biological 

activity of the molecule [5]. An example of the importance of carbohydrates in protein 

metabolism is the increased clearance of nonsialylated forms of tissue plasminogen activator 

via the asialoglycoprotein receptor in the liver [6]. 

The characterization of glycoproteins, however, is time consuming and requires 

significant amounts of material due to the chemical complexity and diversity of glycoforms 

present in an individual protein. While the protein amino acid sequence is maintained, 

glycosylation can occur at a number of sites (macroheterogeneity) and can have a varied and 

heterogeneous character resulting in a large number of distinct glycoforms 

(microheterogeneity). To date, most techniques for carbohydrate analysis have involved 

chemical or enzymatic release of carbohydrate moieties from glycoproteins prior to analysis 

[7,8], However, the characterization of glycopeptides, as opposed to analyzing the pool of 
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released carbohydrates from a glycoprotein, has the advantage that the sequence context of 

each specific family of glycoforms is preserved. 

Several approaches for locating glycopeptide-containing fractions in an LC peptide 

map of a glycoprotein digest have been developed. Glycopeptides can be selectively isolated 

from protein digest by appropriate use of a lectin binding agent such as concanavalin A [9-

11], A glycopeptide with more carbohydrate attached tends to elute slightly earlier in 

reversed-phase separations than the glycopeptide containing less carbohydrate. Although the 

chromatographic separation is insufficient for UV detection to resolve the peaks, the adjacent 

mass spectra are quite different [12]. As a result, a diagonal line for the detection of 

glycopeptides containing the same peptide backbone can be observed after plotting m/z 

versus retention time in LC/MS [13-15]. 

The most specific method, requiring a triple quadrupole MS, involves monitoring of 

sugar oxonium fragment ions during parent ion scan of MS/MS measurement [16-18]. 

Signals derived from nonglycosylated peptides are virtually eliminated, resulting in a total-

ion current trace of only the glycopeptides present in the digest. Together with prior 

knowledge of the recombinant sequence and of the range of carbohydrate structures 

previously characterized from the expression cell line used, molecular weight measurements 

can reveal a relatively detailed picture of the site of glycosylation, the oligosaccharide 

structural classes present, and their molecular heterogeneity. Alternatively, the approach of 

in-source collisional-excitation scanning involves fragmentation of glycopeptides to sugar 
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oxonium fragment ions but does not involve any mass-seiection process, permitting the 

experiment to be performed on a single quadnipole instrument [16-18]. 

In this study, we describe the combination of an exoglycosidase enzyme array with 

LC/MS/MS for structural analysis of carbohydrate moieties of glycopeptides from a 

glycoprotein digest. The enzyme array method involves the division of a glycoprotein digest 

into aliquots, and the incubation of each aliquot with a precisely defined mixture of 

exoglycosidases [19], These exoglycosidases sequentially cleave monosaccharides 

hydrolytically at the glycosidic linkage from the non-reducing terminal of the 

oligosaccharides [20,21]. The exoglycosidases and the enzyme array employed in this work 

are summarized in Table 1 and Fig. 1, respectively. 

In the exoglycosidase enzyme array method, the presence of a specific linkage 

anywhere in the oligosaccharide is determined by the inability of an enzyme mixture lacking 

a given enzyme to cleave that linkage (a stop point) and the ability of the other enzymes to 

cleave the linkages up to that point. The use of LC/MS/MS measurements with parent ion 

monitoring for measuring the extent of enzymatic digestion in each aliquot is based on the 

separation and identification of remaining uncleaved oligosaccharides attached to 

glycopeptides. The changes in molecular mass of glycopeptides correspond to the loss of 

integral numbers of monosaccharide residues. Besides the characterization of carbohydrate 

moieties in glycoproteins, the "fingerprint" analyses of digestion mixtures in the 

exoglycosidase enzyme array may have practical utility in the biotechnology industry as the 

means to demonstrate lot-to-lot consistency in cell culture and purification processes. 
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2. EXPERIMENTAL 

2.1. Materials and Chemicals 

Bovine pancreatic ribonuclease B (RNase B), dithiotiireitol (DTT), iodoacetamide 

(lAM), trypsin (sequencing grade), and trifluoroacetic acid (TFA) were obtained from Sigma 

(St. Louis, MO). Tris(hydroxymethyI)-aminomethane (Tris) and ultrapure urea were 

acquired from Bio-Rad (Hercules, CA) and ICN (Aurora, OH), respectively. All other 

chemical reagents, including acetic acid, acetonitrile, ammonium bicarbonate, citric acid, 

disodium phosphate, and sodium azide, were purchased from Aldrich (Milwaukee, WI) and 

used without further purification. The PD-10 size exclusion columns and five 

exoglycosidases (Table 1) were obtained from Pharmacia (Uppsala, Sweden) and Oxford 

Glycosystems (Rosedale, NY), respectively. Deionized water from a Nanopure II system 

(Branstead, Dubuque, lA) was further filtered through a 0.2 fun Supor-200 membrane filter 

(Gelman Science, Ann Arbor, MI) and was used for preparing all buffer and sample 

solutions. 

2.2. Protein Denaturation/Reductlon, Alkylation, and Trypsin Digestion 

RNase B was completely denatured at a concentration of 5 mg/ml in a solution 

containing 8 M urea and 0.2 M Tris-HCl (pH 8.0) for approximately 30 min at 37 ®C under a 

nitrogen atmosphere. DTT was then added into the solution with a final concentration of 10 

mg/ml. The solution was flushed with nitrogen and incubated at 50 °C for another 30 min. 

The reduced RNase B solution was cooled on ice. The alkylation reaction with 

cysteines was initiated by adding excess lAM reagent (20 mg/ml final concentration) and 
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allowed to proceed for 15 min at room temperature in the dark. A PD-10 column was 

employed for buffer exchange and the proteins were eluted in a solution containing 50 mM 

ammonium bicarbonate at pH 8.0. For trypsin digestion, the reduced and alkylated RNase B 

was mixed with a 2 mg/ml trypsin solution in 1 mM HCl. The final trypsin to RNase B ratio 

was 1:50. The reaction mixture was incubated at 37 °C for 18 hr. 

2.3. Exoglycosidase Enzyme Array Digestion 

After trypsin digestion, the peptide sample was vacuum dried and stored at -20 "C. The 

sample was divided into seven aliquots and digested with the enzyme array shown in Fig. 1. 

The exoglycosidases were prepared in 0.1 M citric acid, 0.2 M disodium phosphate, and 

0.001% sodium azide at pH 5.3. Incubation was carried out for 48 hr at 37 °C. 

2.4. Reversed-Phase LC/MS/MS Analysis of Exoglycosidase Digestion Mixtures 

All LC separations were performed using an Applied Biosystem (Fullerton, CA) 140A 

solvent delivery system at a flow rate of 40 ^il/min. Peptide separations were carried out with 

a 1 mm i.d. x 25 cm Vydac reversed-phase Cig column (LC Packings, San Francisco, CA). 

Approximately 100 pmole of RNase B sample from each exoglycosidase digestion vial was 

injected for every LC/MS/MS analysis. Solvent A was 0.1% TFA in water; solvent B was 

0.1% TFA in acetonitrile/water (90:10, v/v). Separation of the tryptic peptides was effected 

with a gradient of 5% to 50% B in 30 min. Eluent from the LC column was directed to the 

mass spectrometer via a 10-cm-long fused-silica tubing with 50 jim i.d. and 192 nm o.d. 

(Polymicro Technologies, Phoenix, AZ). 
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The mass spectrometer used in this study was a Finnigan MAT TSQ 700 (San Jose, 

CA) triple quadrupole equipped with an electrospray ionization source. The mass 

spectrometer was tuned and the mass range calibrated using an acetic acid solution 

(methanol/water/acetic acid, 50:49:1 v/v/v) containing myoglobin and a small peptide of 

methionine-arginine-phenylalanine-alanine. The electrospray voltage was operated at 5 kV 

and the electron multiplier was set at 1.4 kV with the conversion dynode at -15 kV. Normal 

LC/MS spectra were acquired by scanning Q1 from m/z 140 to m/z 2400 at a scan rate of 3 

sec/scan.. For parent ion tandem MS, the analyzing quadrupole (Ql) was operated at a 

resolution of about unit m/z, while the mass-selecting quadrupole (Q3) was set to pass a 2-3 

dalton window around the ion of interest so as to enhance sensitivity. Ifigh purity argon was 

employed in Q2 as the collision gas with a pressure of 0.2 mtorr. The potentials at the heated 

capillary, tube lens, and Q2 were set to be 26 V, 86 V, and -35 V, respectively. Detailed 

conditions of parent ion tandem MS were described and discussed elsewhere [16,17]. 

3. RESULTS AND DISCUSSION 

Concerns about the quality of recombinant glycoproteins arise in connection with the 

observed macro- and microheterogeneity of glycoforms secreted in the course of a cell 

culture process. Such variations in glycosylation site occupancy (macroheterogeneity), as 

well as glycoform antennary structure (microheterogeneity), have been associated with 

variations in protein properties such as efficacy, clearance rate, antigenicity, and 

immunogenicity [3,4,22]. Thus, the issue of protein quality is not only one of optimizing 
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glycoform composition with respect to the above spectrum of glycoprotein properties but 

also of maintaining glycoform consistency in spite of cellular and process variations. 

In this study, the full potential of the exoglycosidase enzyme array in combination with 

LC/MS/MS for the characterization of carbohydrate moieties in glycoproteins is illustrated 

using RNase B as a model system. RNase B is a glycoprotein containing a single N-

glycosylation site at asparagine (Asn) 34 (Fig. 2). In common with other glycoproteins, it 

consists of a population of glycosylated variants in which a single amino acid sequence is 

diversified by the range of oligosaccharides conjugated to it. The high mannose structures 

contain 5-9 mannose (Man) residues in addition to a N-acetylglucosaminylp 1 - 4 N-

acetylglucosamine (GlcNAc) unit linked to Asn. 

Proteolytic digestion, such as with trypsin, in combination with reversed-phase LC has 

been shown to be of importance as a means of characterizing proteins of interest and 

monitoring for minor alterations in a population of molecules [23]. The integration of 

electrospray ionization MS with reversed-phase LC was shown to add a new dimension to 

the usual UV absorbance data and provide mass information to aid in the identification of 

peptides [13,24,25]. In this study, none of the exoglycosidases were present in aliquot 1 of 

enzyme array (Fig. I). Thus, the remaining uncleaved glycopeptides and peptides of RNase 

B from tryptic digestion were analyzed using LC/MS. 

The reconstructed total ion current map observed from separation of a 5-^1 injection 

(100 pmole) of tryptic digest (Fig. 3) correlated well with the UV map (data not shown). 

Peptide signals were assigned to specific sequence locations with the aid of an interactive 
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computer program (LC/MS BioTooIBox analysis software from Perldn-Elmer, Foster City, 

CA). The program determined the mass of all of the peptides in the LC/MS data set and 

matched them, if possible, to the calculated mass of all peptides that would be expected to 

form based on the reaction conditions and the known sequence (Fig. 2). 

In general, the difference between the determined and the calculated mass values of 

RNase B peptides was less than 0.2 daltons. Only three of the 14 predicted unique tryptic 

fragments of RNase B were not detected. One of these corresponded to a single lysine 

(Lys'). However, this residue was detected in a partial tryptic fragment (Lys'-Lys^) formed 

by incomplete cleavage. The other corresponded to two dipeptides of Ser'^-Arg^^ and Asp'*-

Arg^'. It is often difficult to detect dipeptides by LC/MS since they usually elute in the high-

aqueous portion of the chromatogram where buffer salts present in the sample also elute. 

These excipients tend to suppress peptide-related signals in the electrospray process. 

RNase B obtained from Sigma was free of contaminant of RNase A, the 

nonglycosylated form of the same protein. The peak eluted around 8.75 min (marked with 

in Fig. 3) contained multiple peptides with molecular masses corresponding to the 

glycopeptides of RNase B, exhibiting high mannose N-linked oligosaccharides. To 

selectively detect and locate glycopeptides in the complex digest mixtures, the formation and 

detection of diagnostic sugar oxonium ions, particularly the N-acetylhexosamine (HexNAc^, 

m/z 204) fragments, were employed during LC/MS/MS analysis of tryptic digest in aliquot 1 

of exoglycosidase enzyme array (Fig. 1). The natural abundance of these low-mass fragment 

(marker) ions in normal electrospray mass spectra is often quite low, but their abundance can 
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be significantly enhanced by collision-induced decomposition of the parent ions in Q2 of 

triple quadrupole mass spectrometer. HexNAc^ is selected as the most universal indicator of 

glycopeptides because all N- and O-linked carbohydrates are attached to amino acids via 

HexNAc. 

The results of LC/MS/MS with parent ion monitoring of RNase B tiyptic digest is 

shown in Fig. 4A. Parent ion scanning gave a spectrum of all parent ions that dissociate to 

yield the glycosylation marker ions, the HexNAc"^ ions at m/z 204. The selected ion current 

trace maximized at 7.75 min in the chromatogram, indicating the presence of RNase B 

glycopeptides. In comparison with the results shown in Fig. 3, the decrease in the elution 

time of RNase B glycopeptides was attributed to the change in the LC column condition. 

There were no interferences from nonglycosylated peptide components during LC/MS/MS 

analysis using parent ion monitoring. 

The mass spectrum taken from the average scans under the peak (Fig. 4A) displayed the 

entire RNase B glycopeptide distribution, indicating the heterogeneity of the glycoforms at 

one given attachment site (Asn 34). For example, the peaks at m/z 846, 927, 1008, and 1089 

all differed by an average of 81 daltons. Because these ions were doubly charged, the true 

mass difference was 162, which corresponded to the incremental mass of a hexose (e.g., 

galactose or marmose). In fact, the molecular masses of these glycopeptides displayed a 

distribution of high mannose oligosaccharide structures from Mans to Mang. The relative 

percentage of Man9 glycoform of RNase B was reported to be around 4 - 6% [26]. Besides 

very small percentage of Man9 glycoform, the presence of other glycoforms in this study 
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competed and suppressed the ion intensity of Man9 glycoform during the electrospray 

process. 

The aliquots 2-7 in the exoglycosidase enzyme array (Fig. 1) were analyzed by 

LC/MS/MS with parent ion monitoring of HexNAc^ ions at m/z 204. The selected ion 

current traces for the analyses of aliquots S and 6 are illustrated in Fig. 4B-C for comparison. 

The digestion results are summarized in Table 2. The enzymes needed for the digestion of 

high mannose N-linked oligosaccharides were jack bean a-mannosidase, helix pomatia p-

mannosidase, and jack bean p-N-acetylhexosaminidase. Thus, in any aliquot where all three 

of these exoglycosidases were present, complete digestion occurred and a glycopeptide of 

GlcNAc-Asn 34 was observed with a m/z of 340 for doubly charged ions. Aliquots 2 and 7 

each showed complete digestion. 

Both hexosaminidases were missing from aliquot 3, thus the stop point was the 

GIcNAcpMGIcNAc linkage, resulting in a glycopeptide of GlcNAca-Asn 34 with a m/z of 

441 for doubly charged ions. Aliquot 4 was missing the a-mannosidase, thus the cleavage 

from the nonreducing termini of carbohydrate moieties was not initiated and the measured 

glycopeptides were the same as those in aliquot 1. The p-mannosidase was missing from 

aliquot 5, therefore the a-mannosidase present in the mixture cleaved until the Manpi linkage 

was reached, resulting in a glycopeptide of Man-GlcNAcj-Asn 34 with a m/z of 521 for 

doubly charged ions (Fig. 4B). Aliquot 6 was missing jack bean p-N-acetylhexosaminidase, 

making the stop point the GlcNAcpi-4GlcNAc linkage (Fig. 4C). There, the measured 

glycopeptide was identical to that of aliquot 3. By comparing the results shown in Fig. 4A-



www.manaraa.com

90 

C, the removal of carbohydrates from the glycopeptides of RNase B accounted for the 

increases in hydrophobicity and the elution time in reversed-phase LC. 

The selectivity of the parent ion monitoring method is evident for glycopeptide 

detection of RNase B tryptic digest. The exoglycosidases used in the structural analysis of 

carbohydrate moieties attached to glycopeptides are very specific for the monosaccharide 

anomericity (ot/p) of the glycosidic linkage, and the absolute stereoisomer (D/L) of the 

glycan. Their specificities for the ring size (pyranose/furanose), the glycosidic linkage, the 

branch-points, and the aglycan component are more variable but limited [27], For example, 

all of the exoglycosidases used in this study other than b-mannosidase act on a multiplicity of 

linkages (Table 1). Thus, the removal of a Man residue with a-mannosidase does not provide 

the exact linkage information. Clearly, the limitation of our integrated approach for 

structural characterization of glycoproteins arises from the nature of exoglycosidase enzyme 

array. More sophisticated arrays can be developed than that illustrated in Fig. I, and there 

will be a requirement for further introduction of highly pure and highly specific (bond, arm, 

aglycan) exoglycosidases. 
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TABLE 1 

Activities of Exoglycosidases Used in Enzyme Array 

Exoglycosidase Cleavage Specificity * Activity (units/ml)' 

Jack bean ^-galactosidase Galpl -6>4»3GlcNAc 5.5 

Streptococcus pneumoniae 

p-N-acetylhexosaminidase GlcNAcpi - (2Man or 3, 6Gal) 0.16 

Jack bean a-mannosidase Manal - 2, 3, 6 Man 22.0 

Helix pomatia p-mannosidase Manpi -4GlcNAc 1.1 

Jack bean p-N-acetylhexosaminidase GlcNAcpi - 2, 3, 4, 6Glycan 5.5 

a) Taken from references (20,21). 

b) One unit of enzyme activity is defined as the amount of enzyme required to hydrolyze the 

appropriate 3 mM p-nitrophenylgiycoside at a rate of 1 mmol/min at 37 °C. 
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TABLE2 

The Glycopeptides of RNase B in Each Aliquot of Exoglycosidase Enzyme Array as 

Measured by LC/MS/MS with Parent Ion Monitoring 

Aliquot Number Doubly Charged Corresponding Glycoforms 

Glycopeptide Ions (m/z) 

1 846 Man5-GlcNAc2-Asn 34 

927 Man6-GlcNAc2-Asn 34 

1008 ManT-GlcNAc2-Asn 34 

1089 Mang-GlcNAc2-Asn 34 

2 340 GlcNAc-Asn 34 

3 441 GlcNAcj-Asn 34 

4 846 Mans-GIcNAcj-Asn 34 

927 Man6-GlcNAc2-Asn 34 

1008 Manr-GlcNAcj-Asn 34 

1089 Mang-GlcNAc2-Asn 34 

5 522 Man-GlcNAcj-Asn 34 

6 441 GlcNAcj-Asn 34 

7 340 GlcNAc-Asn 34 
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FIGURE CAPTIONS 

Fig. 1 Exoglycosidase enzyme array used for the analysis of carbohydrate structures in 

RNase B. Numbers referred to the separate digestion vials; O, absence of the 

enzyme; ©, presence of the enzyme. 

Fig. 2 (A) Amino acid sequence and tryptic peptides of RNase B; (B) high maimose 

structures of carbohydrate moieties linked to Asn 34. 

Fig. 3 On-line LC/MS analysis of a tryptic digest of reduced and alkylated RNase B from 

aliquot 1 of exoglycosidase enzyme array (Fig. 1). Numbers referred to the 

peptides summarized in Fig. 2. 

Fig. 4 Parent ion LC/MS/MS of HexNAc"^ ions at m/z 204 for the analyses of digestion 

mixtures in (A) aliquot 1, (B) aliquot 5, and (C) aliquot 6 of exoglycosidase enzyme 

array (Fig. 1). The inset presented the mass spectrum taken from the average scans 

under the peak. 
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Enzymes 

Jack bean p-galactosidase (1.0 unit) 

S. pneumoniae P-N-acetylhexosaminidase (0.03 unit) 

Jack bean a-mannosidase (4.0 unit) 

Helix pomatia P-mannosidase (0.2 unit) 

Jack bean 3-N-acetylhexosaniinidase (1.0 unit) 

Aliquot Number 

1 2 3 4 5 6 7 

O O ® ® 9 ® 9 

O # O # 9 • • 

O 0 # O # ^ 9 

o ® ® ® o ® ® 

o # o ® ® o ® 

Figure 1 
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A. Tryptic Peptides 

No. Position Amino Acid Sequence Averaee Mass fdaltons^ 
1 1 K 146.2 
2 2-7 ETAAAK 589.6 
3 8-10 FER 450.5 
4 11-31 QHMDSSTSAASSSNYCNQMMK 2307.5 
5 32-33 SR 261.3 
6 34-37 NLTK 474.6 Glycosylation site 
7 38-39 DR 289.3 
8 40-61 CKPVNTFVHESLADVQAVCSQK 2401.7 
9 62-66 NVACK 532.6 
10 76-85 NGQTNCYQSYSTMSITDCR 2170.3 
11 86-91 ETGSSK 607.6 
12 92-98 YPNCAYK 857.0 
13 99-104 TTQANK 661.7 
14 105-124 HIIVACEGNPYVPVHFDASV 2166.5 

B. Glycosylation Microheterogeneity 

[Man]Q.,(al-2) -> Man(al-6) 

Man(al-6) 

[Man]Q.,(al-2) Man(al-3)'^ 

^Man(P 1 -4)GlcNAc(P 1 -4) ->GlcNAc->• Asn 
[Man]Q.,(al-2) ->• [Man]o.,(al-2)->Man(al-3) 

Figure 2 
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GENERAL SUMMARY 

On-line capillary isoelectric focusing (CIEF)-electrospray ionization mass 

spectrometry (ESIMS) is utilized for protein characterization. Issues such as detection 

sensitivity and mass resolution are addressed by investigating the use of a microdialysis 

junction interface and the fourier transform ion cyclotron resonance mass spectrometry 

(FTICRMS). 

A microdialysis junction, based on a microdialysis membrane connecting both a 

separation capillary and a short, sharply tapered microelectrospray emitter capillary, is 

demonstrated for on-line CEEF with ESIMS. The microdialysis junction is advantageous over 

the coaxial liquid sheath interface as evidenced by the simplicity in operation procedures, the 

enhancement in detection sensitivity, and the linear correlation between protein's migration 

time and isoelectric point in CIEF-ESIMS. 

On-line combination of CIEF with ESI-FTICRMS is demonstrated for high resolution 

analysis of model proteins, human hemoglobin variants, and Escherichia coli proteins. The 

acquisition of high-resolution mass spectra of hemoglobin p chains allows direct identification 

of hemoglobin variants A and C, diflfering in molecular mass by 1 dalton. Direct mass 

determination of cellular proteins separated in the CIEF capillary is achieved using their 

isotopic envelopes obtained from ESI-FTICRMS. 

An integrated approach, involving the combination of exoglycosidase enzyme array 

with LC/MS/MS, is demonstrated for structural analysis of carbohydrate moieties of 
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glycopeptides from a glycoprotein digest. The molecular mass information from a series of 

controlled digestions together with specific compositions of exoglycosidases in the enzyme 

array provide the sequence and linkage of individual glycan species attached to glycopeptides 

and glycoproteins. Besides the characterization of carbohydrate moieties in glycoproteins, 

the "fingerprint" analyses of digestion mixtures in the exoglycosidase enzyme array using 

LC/MS/MS may have practical utility as the means to demonstrate lot-to-lot consistency in 

biopharmaceuticals manufacturing. 
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